Шрифт:
Интервал:
Закладка:
Но вклад Кеплера гораздо глубже, чем может показаться. Своей работой он распространил самую успешную ментальную абстракцию пространства своего времени — эвклидову геометрию — на небеса. А это, в свою очередь, наделило гелиоцентрическую модель Коперника гораздо большей степенью математической точности, чем у самого Коперника, который для учета недостаточной кругообразности орбиты Марса использовал эпициклы. Элегантное решение Кеплера также послужило опорой для работ двух других гениев — Галилео Галилея и Исаака Ньютона.
Галилео Галилея считают создателем многих областей экспериментальной физики, включая инструментальную наблюдательную астрономию. Его же разум породил основу метода исследований, который и по сей день определяет процедуру научного поиска — так называемого научного метода. Его прорывные исследования Млечного Пути, природных спутников Юпитера, фаз Венеры, солнечных пятен, кратеров и гор на Луне стали возможны благодаря использованию телескопа — одного из двух мощнейших новых инструментов для освоения пространства, созданных в эпоху Возрождения. Как и его аналог микроскоп (1595), телескоп (1608) был введен в употребление благодаря усовершенствованию производства линз. Как и многие другие примеры в истории технологии, производство линз оказалось подстегнуто успехами предыдущих столетий: речь идет о значительном увеличении объемов выпуска стекла в XII и XIII веках из-за неснижавшегося спроса на цветные витражи для украшения всех европейских церквей. С организацией в XIII веке стекольных работ в Мурано, неподалеку от Венеции, итальянское Возрождение поспособствовало развитию технологии, навсегда изменившей исследования в разных пространственных масштабах: от очень крупных и далеких объектов до очень маленьких и близких — никогда ранее не исследованное пространство стало доступным для наблюдения, осмысления и удивления.
Появление микроскопа расширило пределы видимого пространства до микрометрового диапазона (1 мкм = 10–6 м). В этом микроскопическом мире Роберт Гук обнаружил, идентифицировал и назвал ключевую функциональную единицу тканей животных и растений — клетку. В 1665 году Роберт Гук описал это и другие открытия в работе «Микрография». Прочитав книгу Гука, голландский торговец без школьного и формального научного образования Антони ван Левенгук решил научиться делать линзы и смастерить собственный микроскоп. В результате этих усилий, подгоняемый исключительно интеллектуальным любопытством, с помощью своих микроскопов Левенгук открыл бактерии, обнаружив их в образце собственной слюны, а также большое разнообразие микроскопических паразитов и других форм жизни.
К изумлению всех своих современников, Гук, Левенгук и другие микроскописты вскоре доказали существование широчайшего микромира, такого же богатого и разнообразного, как и тот, что мы видим невооруженным глазом. А вскоре выяснилось, что мозг человека образован миллиардами микроскопических клеток, которые назвали нейронами.
Глядя в противоположном направлении — в небеса, Галилео использовал телескоп для астрономических наблюдений за планетами, Солнцем и далекими звездами, и его поддержка идеи Джордано Бруно о том, что эти звезды и впрямь похожи на наше Солнце (все они — примеры небесных «топок»), еще больше расширила человеческие представления о небесном пространстве — до тех пределов, которых достигал вооруженный телескопом человеческий глаз. Современник Галилео Кеплер и сам Галилей говорили о том, что постижение вселенной доступно для человека, особенно с помощью возникшей к XVII веку ментальной абстракции, на которую полагался Кеплер, т. е. математики — шифрованного символического языка, который с тех пор используется для описания всего, что существует вокруг и внутри нас.
Показав, что все предметы вне зависимости от того, легкие они или тяжелые, падают на землю с одинаковым ускорением по одной и той же кривой — параболе, которую можно описать простым математическим уравнением, Галилео выдвинул предположение о том, что законы, выведенные на поверхности Земли с помощью абстрактного математического мышления и изобретательности, применимы и к гораздо более обширным пространствам вселенной. Большинство людей этого не осознавали, но тогда космос расширился на много порядков, по крайней мере в представлениях Галилео.
В день смерти Галилео родился человек, которому предстояло сделать решающий шаг в выполнении одного важного аспекта исходной исследовательской программы Галилея, а именно — трансформировать математические абстракции и объекты, выведенные исключительно за счет внутренней электромагнитной динамики человеческого мозга, в законы, применимые ко всему космическому пространству. Исаак Ньютон — еще один выдающийся представитель этой мозгосети, навсегда изменившей человеческое ощущение пространства, который вывел человеческий разум на ранее невиданные просторы, в широчайшее царство известной и неизвестной вселенной со скрытыми и по сей день пределами, и сделал он это с помощью понятия гравитации.
Трудно определить истинный масштаб интеллектуальных достижений Ньютона. На протяжении двух столетий после формулировки Ньютоном теории гравитации она оставалась первым и единственным описанием фундаментальной силы природы, способной действовать на расстоянии, всегда и везде следуя одному и тому же принципу. Тот факт, что такое потрясающее открытие было выражено одной простой формулой, стал для многих поколений первым примером героического триумфа человеческого рационального мышления над мистицизмом. В то время физика Ньютона стала этакой самодвижущейся ракетой, выведшей своей тягой материализм на доминирующую философскую позицию, которую он и поныне занимает в науке.
Одна из великих догадок Ньютона, а также его достижения в значительном развитии идей Галилея основаны на понимании того, что «движение по орбите есть форма падения». Поняв этот принцип, Ньютон преуспел в обобщении наблюдений Галилея относительно падения предметов на Земле и законов Кеплера о движении планет в единую элегантную теорию гравитации.
Но модель Ньютона выдала намного больше предсказаний и даже условий относительно поведения вселенной. Для начала во вселенной Ньютона пространство было абсолютной заданной сущностью, не требовавшей объяснения в плане происхождения, природы или поведения; оно просто существовало как некое свойство космоса и всего, что в нем содержится, включая нас. Такой подход также подразумевал, что пространство было не меньшим благом для математиков, хотя они, согласно Ньютону, могли вообще не обращать на него внимания. Пространство существовало, чтобы поддерживать изумительную картину сил, действующих на предметы и вызывающих конкретное движение. И в таком случае нам следует просто дать ему возможность делать свое дело спокойно и анонимно, не создавая нам каких-либо ненужных и раздражающих математических трудностей.
Возможно, еще более удивительным, чем вторичная значимость пространства, в представлениях Ньютона о вселенной было то, что и время вовсе не получило билет на небесное шоу. Все события, происходившие в космическом театре вселенной Ньютона, были полностью детерминистическими. Таким образом, зная начальные условия в системе и действующие на тело силы, с помощью законов движения Ньютона можно сразу предсказать все характеристики движения этого тела в будущем с помощью таких параметров, как ускорение, направление движения и общая траектория. Иными словами, если знать начальные условия в системе и силы и применить законы движения