chitay-knigi.com » Домоводство » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 95
Перейти на страницу:

Мнимая часть/Количество итераций/Мнимая часть × количество итераций

0,1/33/3,3

0,01/315/3,15

0,001/3143/3,143

0,0001/31417/3,1417

0,00001/314160/3,14160

Вы видите, к чему стремится последнее значение? Все ближе и ближе к числу π.

В связи с множеством Мандельброта появилась масса вопросов, на которые пока нет ответов. Специалисты по занимательной математике долгие годы пытались понять, можно ли создать такое множество в трех измерениях. Поскольку трехмерной модели комплексной плоскости не существует, очевидного решения этой задачи нет. Тем не менее в 2009 году Дэниел Уайт, 31-летний учитель игры на фортепиано из Бедфорда, нашел вариант ответа, перенеся принципы умножения комплексных чисел с двумерной в трехмерную систему координат.

Точка на комплексной плоскости может быть определена ее расстоянием от начала координат и углом к горизонтальной оси.

Точно так же точка в пространстве может быть определена ее расстоянием от начала координат и двумя углами, один к горизонтальной оси, а второй — к вертикальной, подобно тому как точка на земном шаре определяется широтой (вертикальным углом) и долготой (горизонтальным углом).

Когда вы умножаете два комплексных числа, вы суммируете их углы и умножаете расстояния. Дэн представил умножение двух точек в пространстве как сумму двух горизонтальных углов, сумму двух вертикальных углов и умножение расстояний.

Вооружившись этим определением, Дэн Уайт построил трехмерное множество узников итерации zz2 + c. Результат был неутешительным. «Это напоминало взбитые сливки», — сказал он. Бесконечная живость, присущая множеству Мандельброта, ослабла, и Дэн пожаловался на это участникам интернет-форума для любителей фракталов. Прорыв произошел после того, как инженер-механик их Лос-Анджелеса Пол Ниландер предложил Дэну использовать итерацию zz8 + c. Это небольшое изменение превратило взбитые сливки в обросшую ракушками фрактальную планету с пещерами, как будто кружащими в водовороте горами и напоминающими звезды расщелинами. Объект получил название «оболочка Мандельброта». «Меня охватило благоговение, — признался Дэн. — Было ощущение, что открыта новая вселенная».

Благоговение — единственно верная реакция на оболочку Мандельброта. Этот объект мог бы быть космическим кораблем, обитателем морских глубин, инопланетным вирусом… — всем, чем захотите. Его поверхность более детальна и причудлива, чем все, что может создать человеческое воображение. Тем не менее всю эту структуру абсолютно точно определяет одна строка: zz8 + c.

Открытие множества Мандельброта восстановило связь между математикой и естественными науками. Фрактальная геометрия стала новым подходом к пониманию сложных форм в природных явлениях, от метеосистем до береговых линий, от живых организмов до кристаллов. Но за три столетия до этого другое крупное математическое открытие оказало еще большее влияние на то, как мы видим окружающий мир.

8. Профессор Калькулус

Автор принимается за исчисление, катается на американских горках с Архимедом и Ньютоном, а также пытается выяснить, почему среди французов так много талантливых математиков

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Французский математик Седрик Виллани совсем не похож на обычного университетского профессора. Красивый и худощавый, с мальчишеским лицом и волнистыми волосами до шеи, он скорее напоминает денди «Прекрасной эпохи» или участника претенциозной студенческой рок-группы. Виллани всегда одет в костюм-тройку с накрахмаленным белым воротником, галстук лавальер (галстук, завязанный в большой вычурный бант) и сверкающую брошь в форме тарантула. «Мне же нужно было что-то с этим сделать, — сказал он по поводу своей внешности. — Это произошло инстинктивно».

Я впервые встретился с Виллани в 2010 году в индийском городе Хайдарабаде, на Международном конгрессе математиков, который проводится один раз в четыре года. Из трех тысяч его участников именно Виллани был в центре внимания — и не из-за изысканного внешнего вида, а потому что на церемонии открытия ему вручили медаль Филдса. Филдсовская премия и медаль — это высший знак отличия в области математики. Виллани вел образ жизни поп-звезды: где бы ни появился, его просили дать автограф и сфотографироваться. Однажды мне удалось поговорить с ним, и я спросил, есть ли у знаменитых математиков поклонницы. «Знаете, в мире математики они несколько стеснительны, так что вряд ли будут мне досаждать, — засмеялся он. — К сожалению».

Медаль Филдса вручается на каждом Международном конгрессе математиков двум, трем или четырем ученым не старше 40 лет. (В Хайдарабаде эту премию получили также Элон Линденштраусс из Израиля, Станислав Смирнов из России и Нго Бао Тяу из Вьетнама.) Ограничение по возрасту объясняет первоначальную мотивацию, лежавшую в основе создания премии, идею которой предложил канадский математик Джон Филдс. Однако Филдсовская премия приносила такую известность и признание, что, начиная с присуждения первых двух премий в 1936 году, стал формироваться культ молодости, подразумевающий, что, если вам исполнилось 40 лет, вы уже не можете рассчитывать на получение столь высокой награды. Это несправедливо, поскольку многие математики добиваются самых больших успехов после сорока. С другой стороны, обладателям Филдсовской премии приходится прилагать много усилий к тому, чтобы снова сосредоточиться на работе, так как слава влечет за собой и другие обязанности. Математическое сообщество не воздает должное за достижения всей жизни так, как это делает физическое и химическое сообщество посредством Нобелевской премии[139].

Первый Международный конгресс математиков прошел в 1897 году в Цюрихе. На втором конгрессе, состоявшемся в 1900 году в Париже, немецкий математик Давид Гильберт сделал доклад, в котором перечислил 23 нерешенные математические задачи, тем самым определив направление развития этой дисциплины на ближайшую сотню лет. Математики приезжают на Международный конгресс, чтобы оценить и осмыслить свои достижения, а объявления о присуждении Филдсовской премии содержат краткое описание самых интересных работ. Например, Линденштраусс получил медаль Филдса «за результаты по жесткости относительно мер в эргодической теории и за их применение в теории чисел», Смирнов — «за доказательство конформной инвариантности двумерной перколяции и модели Изинга в статистической физике», а Тяу — «за доказательство фундаментальной леммы в теории автоморфных форм новыми алгебро-геометрическими методами». Возможно, эти формулировки поразили вас не меньше, чем меня, когда я услышал их на конгрессе. На самом деле многим его участникам тоже было трудно понять все это даже после того, как они выслушали разъяснительные доклады. Британский математик Тимоти Гауэрс, лауреат Филдсовской премии за 1998 год, написал в своем блоге: «Если хотите произвести впечатление на друзей, постарайтесь сделать вид, что понимаете [работу Нго]. Если кто-то спросит вас, в чем основная идея его работы, вы можете ответить так: “Ну, самая глубокая его идея состояла в том, что расслоение анизотропной частицы Хитчина в формуле следа — это стек Делиня-Мамфорда”. Если это не произведет должного эффекта, тогда упомяните в разговоре об “искаженных пучках” — они здесь будут явно к месту»[140]. Передовые достижения в области математики настолько сложны в концептуальном плане, что во всем мире найдется не более нескольких сотен человек, способных понять, что именно сделал каждый из обладателей медали Филдса. Что касается работы Нго, математика, специализирующегося на самых абстрактных концепциях, таких людей еще меньше.

1 ... 61 62 63 64 65 66 67 68 69 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности