chitay-knigi.com » Домоводство » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 60 61 62 63 64 65 66 67 68 ... 95
Перейти на страницу:

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Множество узников в итерации z → z2 + с: множество Мандельброта

© Брайан Поллок

На первый взгляд множество Мандельброта (именно так назвали эту фигуру) выглядит уродливо и даже пугающе. Но если присмотреться к нему поближе, то можно увидеть его замысловатую красоту. На представленных ниже рисунках показаны детализированные изображения «Долины морского конька» — так называется фрагмент множества Мандельброта между головой и телом «жука». Расположенные по периметру бугорчатые выступы образуют ажурный «огуречный» орнамент со спиралями, напоминающими хвост морского конька. Внутри этих спиралей еще больше спиралей, затем еще спирали внутри спиралей — и так до тех пор, пока не появится миниатюрное множество Мандельброта, запечатленное в этой фигуре как насекомое в капле янтаря. «Он [фрактал] не оставляет места для скуки, поскольку все время появляется что-то новое, но и не дает нам заблудиться, так как нечто знакомое возвращается снова и снова», — писал Мандельброт. Процесс изменений носит безмерно глубокий и широкий характер: на какой бы фрагмент границы множества вы ни посмотрели, увеличение уровня детализации раскроет бесконечно меняющийся ландшафт. Битва между узниками и беглецами так идеально сбалансирована, что вихри схваток между ними можно обнаружить в каждой точке, в любом масштабе.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Путешествие в Долину морского конька

© Брайан Поллок

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

© Брайан Поллок

Множество Мандельброта — это фрактал. Термин «фрактал» ввел сам Мандельброт для обозначения любой фигуры, содержащей уменьшенные версии самой себя. (Ходила шутка, что буква «Б» в имени «Бенуа Б. Мандельброт» означает «Бенуа Б. Мандельброт».) Фракталы часто встречаются в природе — например, цветок головки цветной капусты имеет ту же форму, что и вся головка, а один фрагмент ветки папоротника напоминает всю ветку. Именно фрактальные свойства множества Мандельброта делают его бесконечно раскрывающиеся узоры столь органичными. Открытие Мандельброта — это тот редкий случай, когда серьезное достижение в области чистой математики стало столь же значимым событием в массовой культуре. Изображения фрактала появились на обложках журналов и на стенах спален; он стал такой же иконой 1980-х, как Адам Ант или подплечники. У фрактала до сих пор масса приверженцев. По мере увеличения мощности компьютеров исследователи проникают в структуру фрактала все глубже и глубже, и каждое такое путешествие отражает не только научные, но художественные и духовные поиски.

Множество Мандельброта можно сделать еще красивее, если раскрасить беглецов в разные цвета в зависимости от того, с какой скоростью они стремятся к бесконечности. Кроме того, анимация таких изображений создает эффект падения сквозь окружающий мир. Автомобильный инженер из Детройта Орсон Ванг купил три компьютера, чтобы воспроизвести изображение фрактала с большей степенью детализации, чем когда-либо удавалось последователям Мандельброта. Он потратил три месяца на выбор самой лучшей исходной позиции и в итоге остановился на точке, расположенной рядом с комплексным числом –1,7 + 0,2i на выступающей части мини-множества Мандельброта. На протяжении шести месяцев компьютеры Ванга создавали изображение с глубиной детализации 10275, что более-менее эквивалентно шестикратному уменьшению обозримой Вселенной до размера протона. В результате было получено завораживающее изображение. Острый шипастый выступ превращается в горизонтальную нить, потом в крест, в восьмиконечную звезду, беспорядочное скопление узловатых стеблей, а затем посредине неожиданно взрывается целый вихрь концентрических кругов. Это зрелище захватывает дух. «Для меня множество Мандельброта олицетворяет как непостижимую сложность, так и надежду», — объясняет Орсон.

Открытие множества Мандельброта стало важной победой компьютеров, показавшей, что они могут помочь в создании новой математики. До этого считалось, что чем ближе вы присматриваетесь к чему-то, тем проще оно становится. Целью научных исследований было разбиение изучаемых объектов на базовые элементы. Но вот появилась фигура, которая становилась сложнее по мере увеличения глубины детализации. Более того, она доказывала, что одно простое правило способно создать бесконечно сложную структуру. Самое удивительное свойство множества Мандельброта состоит в том, что оно образуется всего лишь посредством умножения и сложения — двух элементарных арифметических операций, знакомых даже семилетнему ребенку.

У основания «Долины морского конька» есть точка −0,75. В 1991 году математик Дэйв Болл пытался доказать, что непосредственно над ней нет узников, поэтому стал выполнять итерацию точек, которые находились все ближе и ближе к этой точке[138]. Болл начал с точки –0,75 + 0,1i, осуществив столько итераций, сколько было необходимо, чтобы комплексное число оказалось больше чем за две единицы от начала координат, поскольку как только исходная точка достигает двух единиц от начала координат, она гарантированно становится беглецом. Затем он сделал то же самое с точкой –0,75 + 0,01i и т. д., после чего составил такую таблицу.

1 ... 60 61 62 63 64 65 66 67 68 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности