Шрифт:
Интервал:
Закладка:
Это число возникает часто, но не всегда. Ведь если бы мы не просили банк уменьшать интервалы и – главное! – не стали бы добавлять к имеющейся сумме того, что успело нарасти, то наш рубль просто удваивался каждый год: 1, 2, 4, 8 и т. д. Выявим главную особенность именно такого роста. Оно состоит в том, что размер суммы, на которую начисляются проценты, не только сам увеличивается, но и увеличивает скорость, с которой она растет! Казалось бы, эту скорость определяют те 100 %, которые были с самого начала. Но это не так: 100 % остаются неизменными, а скорость растет. Удивительно, но это число возникает повсюду, где скорость роста определяется не только, например, временем, но и самим растущим числом. Это воистину число естественное, природное.
История его нахождения извилиста. На протяжении лет ста математики вплотную подходили к тому, чтобы его вычислить. В неявном виде это число присутствовало в таблицах логарифмов, изданных Непером в 1618 году. Потом оно – тоже неявно – присутствовало в определении Сент-Винсентом площади сектора гиперболы в 1647 году. Гюйгенс в 1661 году установил связь между гиперболической функцией и логарифмом, он был, как никто близок к тому, чтобы выловить это число, но не сделал этого. Никола Меркатор и Якоб Бернулли тоже были близки. Наконец, Лейбниц в письме к Гюйгенсу в 1690 году выявил это число и ввел для него буквенное обозначение (b), но еще не придал ему численного значения. И только великий Леонард Эйлер (в 1731 г.) довел вопрос практически до современного уровня. Он ввел обозначение буквой е и вычислил значение до 18 знаков после запятой.
И еще об одном словечке, связанном с этим числом, надо сказать: экспонента. Так называют функцию y = ex (е в степени х). Тут важно, как мне кажется, кое-что разъяснить, поскольку это слово давно и прочно вошло в журналистику и публицистику. Сплошь и рядом можно прочитать про «экспоненциальный рост» чего-либо. Часто при этом имеют в виду просто очень быстрый рост, но не только журналюгам, но и некоторым «экспертам-аналитикам» очень хочется выглядеть авторитетно, и они украшают свою речь научными терминами. Экспоненциальным можно назвать только такой рост, который зависит от самой изменяющейся величины, а не любое быстрое увеличение чего-либо. Более других грешат неверным использованием понятия «экспоненциальный рост» экономисты и экономические журналисты.
Как запомнить число е? Придумано немало мнемонических правил, стишков. Для «шибко культурных», например, так: «2,7 затем два Льва Толстых потом равнобедренный прямоугольный треугольник». Сие означает, что после 2,7 дважды повторяется год рождения Льва Толстого (1828), а потом углы 45, 90 и 45 градусов. Или стишок: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли» – по количеству букв в каждом слове. А вот еще: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой».
Большой, однако, след оставил великий писатель: и романов значительных понаписал, и зеркалом революции побыл, и в число Эйлера смог угодить…
Напоследок о том, до какого знака после запятой это число известно. Вот последние (на 2015 год) данные. Два парня, работавшие в НАСА, запустили мощный компьютер и он, пока процесс не остановили, насчитал число с двумя миллионами с лишним знаков после запятой. Кажется, это пока самое длинное е, но ничего, кроме времени (и денег), не нужно, чтобы нащелкать еще сколь угодно много.
π
Число более известное, чем «е», потому что… Не знаю почему. Наверное потому, что числу π в школе уделяют больше внимания, оно чаще упоминается. Но е тоже учат в школе… В общем, про «пи» помнят почти все, а про «е» не все. Сочинено немало стишков и выражений, позволяющих восстановить довольно много знаков в числе π, подсчитывая число букв в каждом слове. Например, вот такие:
Кто и шутя, и скоро пожелать пи число узнать, тот знает.
Чтобы нам не ошибиться,
Нужно правильно прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Как я хочу и желаю надраться до чертей после сих тупых докладов, наводящих тяжелую депрессию.
Есть и английский вариант:
How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics.
То, что число π есть отношение длины окружности к ее диаметру, тоже помнится людьми довольно долго после школьной поры. Известно