chitay-knigi.com » Разная литература » Очерки о Вселенной - Борис Александрович Воронцов-Вельяминов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 163
Перейти на страницу:
Солнце в области радиоволн излучает как абсолютно черное тело, то по интенсивности его радиолучей с длиной волны 1 м его температура составляет сотни тысяч градусов. Метровые волны излучаются солнечной короной, а сантиметровые — хромосферой. Вычисленная выше «температура» характеризует лишь скорость движения электронов в этих оболочках Солнца и соответствует тому, что говорилось ранее в этой книге о причине ионизации газов в короне.

Временами радиоизлучение Солнца усиливается в сотни тысяч раз. Это явление называют «всплесками»; они сопровождают большие солнечные пятна, вернее, происходящие вблизи последних кратковременные извержения из недр крайне горячих газов — хромосферные вспышки.

По теории И. С. Шкловского эти «всплески» вызваны тем, что потоки электрически заряженных частиц, выбрасываемых Солнцем и производящих на Земле полярные сияния, на своем пути вызывают в солнечной атмосфере особые «собственные колебания» находящихся в ней электронов. Эти колебания порождают кратковременное усиленное радиоизлучение.

Однако радиоизлучение активного Солнца очень сложно и разнообразно и теоретическое его объяснение находится в процессе дальнейшей разработки.

Магнитные явления на Солнце

За последние годы теория строения Солнца и явлений на нем сильно продвинулась вперед. В частности, на основе лабораторных опытов с плазмой пришли к выводу о том, что магнитные поля на Солнце играют очень большую роль в наблюдаемых на нем явлениях.

Ядерные реакции происходят в ядре Солнца, где температура достаточно высока — 16 млн. градусов. Радиус этой зоны, где вырабатывается энергия при ядерных реакциях, составляет, по-видимому, около 200 000 км. С удалением от центра Солнца температура падает быстро — на 20° на каждый километр. В этой области происходит перенос лучистой энергии излучением. Не доходя одной десятой по радиусу до фотосферы, температура падает медленнее, и в переносе энергии в ней принимает участие конвекция в виде вертикального подъема горячих газов и опускания холодных газов. Происходит перемешивание вещества, которое, однако, неравномерно по разным направлениям.

В фотосфере водородные атомы в основной своей массе нейтральны, в хромосфере, являющейся переходным слоем, они ионизуются и в короне наступает полная ионизация. Толщина фотосферы только 200–300 км, т. е. около V300 радиуса Солнца. Таким образом атмосфера Солнца состоит из плазмы — смеси ионов и свободных электронов. Хромосфера, в сотни тысяч раз менее плотная, чем фотосфера, переходит в корону. За счет облучения энергией, испускаемой фотосферой, при ее температуре в 6000° термометр в хромосфере показал бы 5000°, а в короне еще меньше. Частицы разреженного газа хромосферы и короны налетали бы на термометр так редко, что не могли бы его нагреть. Однако скорости движения частиц в хромосфере и короне очень велики. Известно, что температуру газа можно измерять кинетической энергией его частиц. Это так называемая кинетическая температура. В фотосфере температуры излучения и кинетическая соответствуют друг другу, а в хромосфере и короне различаются резко — в хромосфере кинетическая температура составляет десятки тысяч градусов, а в короне — около миллиона градусов.

«Нагревание» хромосферы происходит эа счет энергии распространяющихся в ней волн, порождаемых движением гранул в фотосфере. В короне, простирающейся на расстояние до 10 радиусов Солнца, число атомов в 1 см3 в 100 миллиардов раз меньше, чем число молекул в 1 см3 воздуха у поверхности Земли. При такой же плотности, как воздух, вещества в короне хватило бы на слой, окружающий Солнце при толщине всего в несколько миллиметров. В ней возникает основное» радиоизлучение Солнца. С такой же интенсивностьто, как корона, нагретое тело такого же размера излучало бы при температуре в миллион градусов, а такой кинетической температуры требуют, как мы видели, и наблюдаемые в спектре короны яркие линии многократно ионизованных металлов.

Изучение взаимодействия магнитного поля и плазмы показало, что на плазму в целом движение вдоль силовых линий магнитного поля не влияет. При движении же электрически заряженных частиц поперек линий поля (т. е. при течении тока) возникает дополнительное магнитное поле. Сложение этих магнитных полей вызывает искривление и вытягивание силовых линий вслед за движением вещества. Между тем у магнитных силовых линий есть натяжение, стремящееся их выпрямить. Это создает магнитное давление, и поле, мешая плазме пересекать силовые линии, его тормозит и даже может увлечь за собой, если поле сильно. Если оно слабо, то плазма перемещает силовые линии вместе с собой. Итак, во всех случаях можно говорить о том, что силовые линии как бы «вморожены» в плазму.

Эти сведения, а также регулярные измерения напряжения магнитного поля в разных местах на Солнце позволили подойти к объяснению многих явлений на нем.

Общее магнитное поле Солнца очень слабо, но оно, видимо, играет большую роль. Лучи короны, особенно в полярных областях Солнца, располагаются подобно силовым линиям, выходящим и входящим у полюсов намагниченного шара. Изменение направления поля в каждом полушарии Солнца от одного цикла солнечной активности к следующему также очень важно. Причина этого изменения еще не ясна, но известны звезды с очень мощными магнитными полями, у которых полярность поля также периодически меняется.

При вращении Солнца самые быстрые (экваториальные) слои увлекают за собой силовые линии слабого общего поля Солнца, которые в них «вморожены». Эти линии вытягиваются под фотосферой и за три года обвиваются вокруг Солнца шесть раз, образуя тугую спираль. Если силовые линии расположились при этом теснее, то, значит, тут общее (и искаженное здесь) магнитное поле Солнца усилилось.

Ближе к полюсам силовые линии общего поля выходят из фотосферы вверх, и поэтому поле здесь не усиливается. Впрочем, на самом экваторе, где угловая скорость вращения в некоторой зоне меняется мало, поле также не усиливается, а на широтах +30°, где скорость вращения меняется быстрее всего, усиление поля максимально. Так под фотосферой образуются подобия трубок из сгущенных силовых линий. Давление газа в них складывается с давлением магнитного поля, перпендикулярным к его линиям. Газ в «трубке» расширяется и становится как бы легче и может «всплыть» наверх. В этом месте, где она приближается к поверхности, на Солнце наблюдается усиление магнитного поля, а затем и появление факела, а за ним и поля факелов. Их горячие газы поднимаются выше, чем соседние места фотосферы, потому что слабое магнитное поле вокруг них гасит мелкие турбулентные движения, стремящиеся тормозить поток горячего выходящего газа. Над факелами в хромосфере также происходит нагрев и возникают горячие флоккулы. Наконец, над флоккулами в короне начинается более яркое свечение. Так развивается активная область на Солнце. Всплывая к поверхности и пересекая ее, трубка со сгущенными силовыми линиями образует местные усиления магнитного поля и возникают солнечные пятна. Их пониженная температура обусловлена тем, что очень сильное магнитное поле в этой области подавляет не только турбулентность, но и сильные конвективные движения.

1 ... 92 93 94 95 96 97 98 99 100 ... 163
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.