chitay-knigi.com » Разная литература » Очерки о Вселенной - Борис Александрович Воронцов-Вельяминов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 91 92 93 94 95 96 97 98 99 ... 163
Перейти на страницу:
весть — «короний оказался железом»…

Одни линии корония оказались запрещенными линиями девятикратно ионизованного железа, другие — такими же линиями тринадцатикратно (!) ионизованного железа, а менее яркие линии — принадлежащими многократно ионизованному никелю и другим элементам.

Плотность газа в короне, несомненно, очень мала и могла бы допустить излучение запрещенных линий. А железо в солнечной короне могло бы получаться за счет испарения железной метеоритной пыли, когда она достаточно приближается к Солнцу и нагревается.

В первый момент к отождествлению корония астрономы отнеслись недоверчиво. Как может быть, чтобы вблизи Солнца, которое само имеет температуру «всего лишь» в 6000°, могли существовать столь сильно ионизованные атомы железа. Для такой ионизации в обычных условиях нужна температура выше 100 000°, и потому никто раньше не искал короний среди ионов, существование которых требует таких высоких температур. В последнее время стало, однако, намечаться объяснение существованию вблизи Солнца паров железа, атомы которого лишились 9 и даже 13 электронов. Это может произойти не только от высокой температуры, но и от влияния некоторых других процессов, возникающих в разных местах хромосферы. Описание их здесь было бы слишком сложно, но укажем, что московский астроном И. С. Шкловский представляет обстоятельства дела следующим образом. В условиях короны достаточно наличия слабого электрического поля в ней, чтобы возникло движение электронов наружу со скоростью, соответствующей температуре в 1 000 000°.

Эти электроны, возникающие в самой короне, с бешеными скоростями налетая на находящиеся в ней же атомы железа и никеля, ионизуют их так сильно, как при других условиях это осуществлялось бы при температуре в миллион градусов.

Как показали В. А. Крат и С. Б. Пикельнер, поверхность Солнца, выбрасывая свои электроны в мировое пространство, получает положительный заряд благодаря накапливанию положительно заряженных ионов. Но это ведет тогда к взаимному отталкиванию ионов и к выбросу их из Солнца, заряд которого, уменьшаясь, позволяет электронам выбрасываться снова. Так Солнце постепенно теряет свою массу.

Разгадку корония можно считать решенной, и можно считать решенной загадку спектра солнечной короны, в целом. К настоящему времени в спектрах небесных светил не осталось ни одного «небесного вещества», все их линии принадлежат веществам, имеющимся и на Земле. Мы потеряли в науке два химических «элемента» — небулий и короний, но взамен них приобрели знания о строении и поведении как мельчайших атомов, так и грандиозных мировых тел…

Активные области, хромосферные вспышки, рентгеновское и радиоизлучение Солнца

На Солнце в так называемых активных областях наблюдается усиление движения газов и изменение характера этих движений. В этих областях возникают не только пятна, но и факелы, флоккулы, усиление магнитных полей, некоторые протуберанцы.

Активные области излучают больше корпускул, ультрафиолетовых, рентгеновских и даже космических лучей высокой энергии. Все эти виды излучений лишь недавно стало возможно изучать приборами, установленными на высотных ракетах, искусственных спутниках Земли и межпланетных автоматических станциях.

Ультрафиолетовый конец солнечного спектра впервые сфотографировали с высотных ракет, так как земная атмосфера это коротковолновое излучение поглощает целиком и не пропускает к Земле.

Между тем ультрафиолетовый спектр Солнца содержит ценнейшую дополнительную информацию о физическом состоянии и химическом составе внешних слоев Солнца. Ультрафиолетовые лучи — главный ионизатор земной атмосферы, основной создатель ее ионосферы.

Рис. 131. Фотография Солнца в рентгеновских лучах

Для измерения рентгеновского излучения Солнца вместо спектрографа приходится пользоваться особыми счетчиками, покрытыми тонкой пленкой, поглощающей рентгеновские кванты разной энергии, в зависимости от состава и толщины пленки. На рис. 131 приведена фотография Солнца в рентгеновских лучах. В этих лучах особенно ярки активные области. В них рентгеновская яркость раз в 100 больше, чем в спокойных областях Солнца. Рентгеновское излучение возникает во внутренней короне Солнца, на десятки тысяч километров выше уровня появления водородных флоккул.

По спектрогелиограммам было обнаружено, что изредка на Солнце бывают кратковременные яркие вспышки особенно плотных и горячих газов; температура плазмы во вспышках достигает нескольких десятков тысяч градусов. Именно они-то, а не самые пятна, с которыми вспышки обычно связаны, являются причиной быстрых электромагнитных возмущений на Земле, которые раньше приписывались непосредственно влиянию пятен. (Впрочем, дело обстоит, по-видимому, еще сложнее.) Электромагнитные возмущения на Земле проявляются в колебаниях магнитной стрелки компаса, в помехах в работе проволочного и радиотелеграфа и т. д. Об этом мы поговорим еще и дальше.

Рис. 132. Фотографии четырех солнечных вспышек в свете бальмеровской линии водорода Нα

Для радиосвязи возможность предвидеть наступление таких помех была бы особенно ценна. Опыты предсказания наступления таких помех и даже опыты прогноза погоды, основанные на анализе наблюдаемой связи помех с областями активных изменений и активного излучения на Солнце, все время делаются. Дело в том, что, вообще говоря, для того чтобы повлиять на Землю, активная область должна быть вблизи центра видимого диска Солнца. Всегда можно заранее рассчитать, зная период вращения Солнца, когда активная область, видимая вдали от центра, окажется вблизи него (вернее, на его центральном меридиане).

Улучшение предсказаний хромосферных вспышек очень важно для обеспечения безопасности космонавтов. При хромосферных вспышках возникают лучи, сходные по составу с космическими лучами: 90 % протонов и 10 % альфа-частиц (ядер гелия). Интенсивность космического излучения возрастает при этом в тысячи раз и более в течение нескольких часов. Особенно мощные вспышки происходят в среднем один раз за 4–5 лет в эпоху спада или подъема солнечной деятельности.

С 1957 г. на Солнце пытались обнаружить изотоп водорода с атомным весом 2. Можно было ожидать его образования при ядерных реакциях, сопровождающих солнечные вспышки. В августе 1972 г. при сильной вспышке было обнаружено гамма-излучение, которое могло произойти при образовании дейтерия. На следующий год дейтерий был обнаружен непосредственно в солнечном ветре при нескольких вспышках благодаря приборам, установленным на двух искусственных спутниках Земли. Тут же зарегистрировали и другой изотоп водорода — тритий. Он нестабилен и половина его распадается за 12,6 лет. Оба изотопа возникают от столкновений быстрых протонов и ядер гелия с ядрами более тяжелых элементов. В продуктах вспышек содержание дейтерия возрастает в сотни раз, достигая 0,1 % атомов водорода. Проходившая, по-видимому, очень активная область Солнца дала ряд очень сильных хромосферных вспышек, сопровождавшихся рядом геофизических последствий — бурь в космических лучах, больших магнитных бурь и возмущений ионосферы. Подобные вспышки крайне опасны для космонавтов в открытом Космосе и даже внутри корабля. К сожалению, предвидеть их мы еще не умеем.

Многие исследователи в годы второй мировой войны обнаружили радиоизлучение, идущее от Солнца. Из радиоволн, испускаемых Солнцем, мы можем принимать волны длиной (примерно) от 10 м до нескольких сантиметров.

Если предположить, что

1 ... 91 92 93 94 95 96 97 98 99 ... 163
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.