Шрифт:
Интервал:
Закладка:
Понятно, что основным недостатком теории являются расплывчатость, субъективность и неколичественный характер центрального понятия «усилие», но Ципф считал, что на этой основе можно объяснить все поразительное разнообразие человеческого поведения. Более того, Ципф пытался применить свою теорию для решения весьма сложных и специфических научных проблем, включая лингвистику (особенности развития языков), музыку, демографию, распределение промышленных объектов, статистику путешествий и заключения браков, механизмы международных и гражданских конфликтов, а также распределение доходов населения.
При всей глобальности своих теоретических замыслов Ципф вошел в историю науки прежде всего как собиратель эмпирических фактов. Для своих изысканий он собрал гигантские наборы статистических сведений (говоря современным языком, базы данных) по всем перечисленным научным направлениям. По иронии судьбы, многие его теоретические идеи давно устарели, а именно собранные статистические данные стали представлять особую ценность. Изучая и анализируя данные о разных видах человеческой деятельности, Ципф еще тогда отметил, что практически все распределения подчиняются степенному закону, характерной особенностью которого выступают прямые линии в логарифмических координатах.
Я уже писал, что Пер Бак (скончавшийся в 2002 году) полагал самоорганизующуюся критичность характерной особенностью «механизмов действия природы». Интересно, что Ципф тоже не только выделил степенной закон распределения, но и полагал его характерной особенностью «действия общественных механизмов», считая даже, что фундаментальное различие между социально-общественными и природными явлениями заключается как раз в том, что в первых доминируют распределения типа степенного закона, а во вторых — статистика Гаусса. (Но мы уже видели, что в настоящее время наука выявила степенные законы распределения и для множества природных явлений.)
Ученых середины прошлого века интересовали почти исключительно гауссовские (случайные) распределения, так что следует отметить проницательность Ципфа и его огромную работу по сбору и обработке социологических статистических данных. Их ценность особенно возросла в последние годы, когда поведение систем, флуктуации которых описываются степенными законами, вдруг стало одним из важнейших разделов статистической физики. Ципф во многом обогнал свое время, и он, безусловно, обнаружил многие научные факты исключительной важности. В 1983 году Бенуа Мандельброт писал с сожалением, что «специалисты по статистике и социологии в свое время просто не смогли использовать идеи и данные Ципфа из-за вопиющей отсталости теоретических оснований своих наук»5.
Особое внимание Ципф уделял степенному закону распределения с показателем -1 (рис. 10.3), который в настоящее время рассматривается в качестве основной характеристики самоорганизующейся критичности. Он полагал, что именно эта зависимость отличает групповое поведение людей от случайного поведения отдельных личностей, иными словами, рассматривал эту форму степенного закона в качестве признака или показателя взаимодействия людей в коллективе. Именно это утверждение можно сейчас считать основным и самым ценным вкладом Ципфа в статистическую теорию социального поведения.
Физик Филип Андерсон очень точно отметил, что именно распределения показателей по степенному закону в социальных явлениях практически уничтожают старую идею об усредненном поведении, восходящую еще к теории Кетле об «усредненном человеке». Действительно, степенные законы распределения постоянно приводят к усилению роли крупных событий, которые в обычной, гауссовской статистике просто обречены на роль абсолютно ничтожного фактора. Уже упоминалось, что когда-то Вильфредо Парето ввел такие распределения в социальную статистику задолго до того, как они были обнаружены и стали интересны для физиков. Еще в 1897 году он заявил, что распределение доходов в обществе соответствует именно такой зависимости (рис. 10.4), т.е. большая часть национального богатства с неизбежностью становится достоянием небольшой части населения. В настоящее время некоторые оценки показывают, что в Соединенных Штатах, например, 1% населения владеет примерно 40% национального достояния, а 5% — более чем половиной этого достояния6, причем неравенство в распределении богатств страны в США постоянно повышается (по крайней мере с начала 1970-х годов), и эта тенденция постепенно проявляется и в других странах.
Рис. 10.4. Неравномерность в распределении национального дохода обычно описывается распределением по степенному закону. Этот факт был впервые отмечен Вильфредо Парето в конце девятнадцатого века, который установил, что наклон кривой соответствует показателю —1 (позднейшие исследования показали, что этот показатель обычно несколько больше). Большие значения наклона соответствуют более «слабой» или истощенной экономике. На рисунке представлена кривая распределения богатства населения Великобритании в 1996 году, построенная по данным Налоговой службы. Показанное распределение относится к классу кумулятивных, то есть каждая точка соответствует проценту населения страны с суммарным богатством, выше указанного по горизонтальной оси. Закон Парето относится к доходам наиболее богатой части населения (примерно 10% или чуть больше).
Парето выразил обнаруженное неравенство в доходах так называемым правилом 80:20, означающим, что 80% богатства страны обычно принадлежат 20% населения. Он обнаружил, что такое распределение характерно для многих стран, независимо от их политического строя или системы налогообложения. Это же правило оказывается справедливым во многих других ситуациях: 80% дохода определяются 20% расходов и издержек; 80% результата работы определяются лишь 20% приложенных усилий и т.д. За некоторой забавностью повторения сочетаний этих цифр, за удивительной непропорциональностью затрат и отдачи не следует забывать о главном: о том, что эти распределения подчинены степенному закону. В действительности, конечно, наклон прямой не обязательно соответствует этому соотношению, и обычно наблюдаются некоторые отклонения, однако сама прямая линия возникаегвсегда. В частности, точно такой же тип распределения богатства был характерен для Древнего Египта в XIV столетии до нашей эры, что было установлено по анализу распределения размеров сохранившихся фундаментов и остатков зданий в древней столице Ахетатоне.
Распределение доходов по правилу Парето позднее стало одним из фундаментальных понятий социологии и приобрело почти мистическое значение, напоминающее роль распределения Гаусса в естественных науках начала XIX века. В 1940 году экономист Карл Снайдер даже заявил: «Кривая Парето может быть названа одним из величайших обобщающих понятий человеческого разума»7. Нельзя не признать, что возможности проверки и границы применимости этого распределения остаются расплывчатыми, что прежде всего обусловлено трудностью получения достоверной информации о размерах личного состояния граждан. Основные методы оценки сводятся к анализу деклараций о налогообложении доходов и налогов на наследуемое имущество, но точность таких оценок весьма сомнительна, и этот факт даже позволил экономисту Джорджу Финдли Ширасу заявить в 1935 году, что правило Парето вообще не имеет научной ценности. Однако в целом можно все же считать, что степенной закон действительно выполняется для распределения доходов, по крайней мере в той части распределения, которая относится к наиболее обеспеченным слоям населения, как показано на рис.10.4. Крутизна кривых на таких распределениях является характерным параметром степени имущественного неравенства в данном обществе, т.е. более крутым кривым соответствует одновременно избыточное богатство небольшого числа людей и бедность или нищета большей части населения. В экономиках стран с предельной несправедливостью распределения доходов типа Гаити и Заира (или того же Древнего Египта) горстка людей является сверхбогатой на фоне чудовищной нищеты почти всего остального населения. Кстати, это еще раз требует с особой осторожностью относиться к выступлениям многих политиков, которые любят ссылаться на среднестатистические показатели по отдельным странам, не упоминая о распределении по доходам.