Шрифт:
Интервал:
Закладка:
105. Maes, M. and Twisk, F.N. (2009), ‘Why myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may kill you: disorders in the inflammatory and oxidative and nitrosative stress (IO&NS) pathways may explain cardiovascular disorders in ME/CFS’: www.ncbi.nlm.nih.gov/pubmed/20038921.
106. Maes, M. (2009), ‘Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms’: www.ncbi.nlm.nih.gov/pubmed/19127706.
107. Yu, LC-H. (2018), ‘Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis’: www.ncbi.nlm.nih.gov/pmc/articles/PMC6234774/.
108. Bures, J., et al. (2006), ‘Small intestinal bacterial overgrowth syndrome’, World Journal of Gastroenterology, 16(24):2978–90.
109. Saffouri, G.B., etal. (2019), ‘Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders’: www.ncbi.nlm.nih.gov/ pmc/articles/PMC6494866/.
110. Sachdev, A.H. and Pimentel, M. (2013), ‘Gastrointestinal bacterial overgrowth: pathogenesis and clinical significance’: www.ncbi.nlm.nih.gov/pubmed/ 23997926.
111. Pimentel, M., et al. (2004), ‘A link between irritable bowel syndrome and fibromyalgia may be related to findings on lactulose breath testing’: www.ncbi.nlm.nih.gov/pubmed/15020342.
Глава 10. Гормоны и резервная энергетическая система тела
112. Cadegiani, F.A. and Kater, C.E. (2016), ‘Adrenal fatigue does not exist: a systematic review’: www.ncbi.nlm.nih.gov/pmc/articles/PMC4997656/.
113. Wyller, V.B., et al. (2016), ‘Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: a crosssectional study’: www.ncbi.nlm.nih.gov/pubmed/27149955.
114. Torres-Harding, S., et al. (2008), ‘The associations between basal salivary cortisol and illness symptomatology in chronic fatigue syndrome’: www.ncbi.nlm.nih.gov/pmc/articles/PMC2730359/.
115. Ludwig, D.S. (2014), ‘Clinical update: the low-glycaemic-index diet. https://www.thelancet.com/journals/lancet/article/PIIS01406736%2807%2960427-9/fulltext.
116. Savage, D.B., et al. (2007), ‘Disordered Lipid Metabolism and the Pathogenesis of Insulin Resistance’: www.ncbi.nlm.nih.gov/pmc/articles/PMC2995548/.
117. Moghaddam, E., et al. (2006), ‘The Effects of Fat and Protein on Glycemic Responses in Nondiabetic Humans Vary with Waist Circumference, Fasting Plasma Insulin, and Dietary Fiber Intake’: https://academic.oup.com/jn/article/136/10/ 2506/4746688.
118. Hucklebridge, F., et al. (2005), ‘The diurnal patterns of the adrenal steroids cortisol and dehydroepiandrosterone (DHEA) in relation to awakening’: www.sciencedirect.com/science/article/abs/pii/S030645300400071X.
119. Arendt, J. (2006), ‘Melatonin and Human Rhythms’: www.tandfonline.com/doi/full/10.1080/07420520500464361.
120. Pevet, P. and Challet, E. (2011), ‘Melatonin: Both master clock output and internal time-giver in the circadian clocks network’: www.sciencedirect.com/science/article/abs/pii/S0 928425711000040?via%3Dihub.
121. Videnovic, A., et al. (2014), ‘Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease’: www.ncbi.nlm.nih.gov/pubmed/24566763 JAMA.
122. Tsang, A., et al. (2014), ‘Interactions between endocrine and circadian systems’: https://jme.bioscientifica.com/view/journals/jme/52/1/R1.xml.
123. Cajochen, C., et al. (2011), ‘Evening exposure to a light-emitting diodes (LED)- backlit computer screen affects circadian physiology and cognitive performance’: www.physiology.org/doi/10.1152/japplphysiol.00165.2011.
124. 124 Cajochen, C., et al. ‘High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light’: https://pubmed.ncbi.nlm.nih.gov/15585546/2005.
125. Schmidt, C., et al. (2018), ‘Light exposure via a head-mounted device suppresses melatonin and improves vigilant attention without affecting cortisol and comfort’: https://orbi.uliege.be/bitstream/2268/226193/1/Schmidt 2018 PsyCh.pdf.
126. Green, A., et al. (2017), ‘Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities’: www.tandfonline.com/doi/full/10.1080/07420528.2017.1324878.
127. Cho, Y, et al. (2016), ‘Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment’: www.ncbi.nlm.nih.gov/pubmed/26375320.
128. Codoñer-Franch, P. and Gombert, M. (2018), ‘Circadian rhythms in the pathogenesis of gastrointestinal diseases’, World Journal of Gastroenterology, 24(38): 4297–4303.
129. Tähkämö, L., et al. (2019), ‘Systematic review of light exposure impact on human circadian rhythm’: www.tandfonline.com/doi/full/10.1080/07420528.2018. 1527773.
130. Prayag, A., et al. (2019), ‘Light Modulation of Human Clocks, Wake, and Sleep’: www.mdpi.com/2624-5175/1/1/17.
131. Leese, G., et al. (1996), ‘Short-term night-shift working mimics the pituitary-adrenocortical dysfunction in chronic fatigue syndrome’: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.81.5.8626849.
Глава 11. Иммунная система и снижение нагрузки на организм
132. Cressey, D. (2011), ‘XMRV paper withdrawn’: http://blogs.nature.com/news/ 2011/12/xmrv-paper-withdrawn.html.
133. Anand, S.K. and Tikoo, S.K. (2013), ‘Viruses as Modulators of Mitochondrial Functions’, Advances in Virology, vol. 2013, Article ID 738794.
134. Centers for Disease Control and Prevention (2018), ‘Possible Causes | Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)’: www.cdc.gov/me-cfs/ about/possible-causes.html.
135. Ikuta, K., et al. (2003), ‘Diagnostic evaluation of 2′, 5′-oligoadenylate synthetase activities and antibodies against Epstein-Barr virus and Coxiella burnetii in patients with chronic fatigue syndrome in Japan’: www.sciencedirect.com/science/article/abs/pii/S1286457903002193?via%3Dihub.
136. Eriksen, W. (2018), ‘ME/CFS, case definition, and serological response to Epstein-Barr virus. A systematic literature review’: www.tandfonline.com/doi/full/ 10.1080/21641846.2018.1503125.
137. Rasa, S., et al. (2018), ‘Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)’: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6167797/.
138. Yalcin, S., et al. (1994), ‘Prevalence of Human Herpesvirus 6 Variants A and B in Patients with Chronic Fatigue Syndrome’: http://doi.wiley.com/10.1111/ j.1348–0421.1994.tb01827.x.
139. Eldin, C., et al. (2017), ‘From Q Fever to Coxiella burnetii Infection: a Paradigm Change’: www.ncbi.nlm.nih.gov/pubmed/27856520 2017.
140. Buchwald, D., et al. (1996), ‘Viral serologies in patients with chronic fatigue and chronic fatigue syndrome’: http://doi.wiley.com/10.1002/%28SICI%291096-9071%28199609%2950%3A1%3C25%3A%3AAID-JMV6%3E3.0.CO%3B2-V.
141. Koelle, D.M., et al (2002), ‘Markers of Viral Infection in Monozygotic Twins Discordant for Chronic Fatigue Syndrome’: https://academic.oup.com/cid/article-lookup/doi/10.1086/341774.
142. Brewer, J.H., et al. (2013), ‘Detection of Mycotoxins in Patients with Chronic Fatigue Syndrome’: www.ncbi.nlm.nih.gov/pmc/articles/PMC3705282/.
143. Chester, A.C. and Levine, P.H. (1994), ‘Concurrent Sick Building Syndrome and Chronic Fatigue Syndrome: Epidemic Neuromyasthenia Revisited’: http://academic.oup.com/cid/article/18/Supplement_1/S43/317008/Concurrent-Sick- Building-Syndrome-and-Chronic.
144. Campbell, A.W., et al. (2004), ‘Mold and Mycotoxins: Effects on the Neurological and Immune Systems in Humans’: www.sciencedirect.com/science/article/pii/S0065216404550153?via%3Dihub Adv.
145. Rea, W.J., et al. (2003), ‘Effects of Toxic Exposure to Molds and Mycotoxins in Building-Related Illnesses’: https://pubmed.ncbi.nlm.nih.gov/15143852/.
146. Ratnaseelan, A.M, et al. (2018), ‘Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes’: www.clinicaltherapeutics.com/article/S0149-2918(18)30229-7/fulltext.
147. Centers for Disease Control and Prevention (2019), ‘Lyme and Other Tickborne Diseases Increasing’: www.cdc.gov/media/dpk/diseases-andconditions/lyme-disease/ index.html.
Глава 13. Научитесь прислушиваться к своему телу
148. White, P.D., et al. (2011), ‘Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial’: www.ncbi.nlm.nih.gov/pubmed/21334061.
149. Wilshire, C., et al. (2017), ‘Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavioural therapy? A critical commentary and preliminary reanalysis of the PACE trial’: www.tandfonline.com/doi/ full/10.1080/21641846.2017.1259724.
150. Wilshire, C.E., et al. (2018), ‘Rethinking the treatment of chronic fatigue syndrome — a reanalysis and evaluation of findings from a recent major trial of graded exercise and CBT’: www.ncbi.nlm.nih.gov/pubmed/29562932BMC.
151. Sharpe, M., et al. (2019), ‘The PACE trial of treatments for chronic fatigue syndrome: a response to Wilshire et al.’: www.ncbi.nlm.nih.gov/pubmed/30871632.
152. Wilshire, C.E. and Kindlon, T. (2019), ‘Response: Sharpe, Goldsmith and Chalder fail to restore confidence in the PACE trial findings’: www.ncbi.nlm.nih.gov/pubmed/30914065.
153. Torjesen, I. (2015), ‘Tackling fears about exercise is important for ME treatment, analysis indicates’: www.bmj.com/cgi/doi/10.1136/bmj.h227.
154. Twisk, F. and Maes, M. (2009), ‘A review on cognitive behavorial therapy (CBT) and graded