chitay-knigi.com » Домоводство » Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:

Аристотель говорит, что этот второй аргумент доказывает существование бесконечности по делению (нельзя разделить объект на бесконечное количество частей), а первый аргумент — по сложению (не существует бесконечно больших величин). В любом случае, заключает он, актуальной бесконечности не существует.

Кантор. Бесконечность в математике.

РИС. 2

БЕСКОНЕЧНОСТЬ ПО ГАЛИЛЕЮ

Начиная со Средневековья положение Аристотеля о бесконечности стало практически религиозной догмой. Например, в V веке Святой Августин (354-430) в самом знаменитом своем труде «О граде Божием» писал: «Неужели Бог не знает всех чисел вследствие их бесконечности», не следует «признавать их не подлежащими божественному ведению, [...] мы не должны сомневаться в том, что Ему известно всякое число», хотя бы потому, что «разум Его неизмерим». Таким образом, актуальная бесконечность существует, но ее знание подвластно только безграничному разуму Бога. Требовать от человеческого разума понимания бесконечности — означает поставить его в один ряд с божественным, что является ересью. Георг Кантор был религиозным человеком и отдавал себе отчет в том, что касается этой стороны вопроса. Как мы увидим, развитие собственной математической теории актуальной бесконечности стоило ему немалых душевных усилий.

Теперь перенесемся во времени и рассмотрим работу Галилео Галилея (1564-1642) «Беседы и математические доказательства относительно двух новых наук» (1638). Как видно из названия, она написана в форме дискуссий. В них участвуют три персонажа: Сальвиати, выражающий точку зрения Галилея, Сагредо, образованный человек той эпохи, и Симплицио, представитель традиционной науки, основывающейся в том числе на трудах Аристотеля.

СОВЕРШЕННЫЕ ЧИСЛА

Гипотеза — это утверждение, ложность или истинность которого еще не доказана. Многие из них касаются бесконечности, например гипотеза о совершенных числах. Совершенное число равно сумме собственных делителей (включая 1, но не считая само число). Например, 6 — совершенное число, поскольку его делителями являются 1,2,3, а 6 = 1 + 2 + 3. Еще один пример — число 28 = 1 + 2 + 4 + 7 +14. Согласно пока не подтвержденной гипотезе, количество совершенных чисел бесконечно.

Две новые науки, упомянутые в заголовке этого труда, — статика и динамика, а вся книга в целом представляет собой критику аристотелевских законов физики. Хотя Галилей и разрушает большую часть постулатов древнегреческого ученого, он разделяет его настороженность в отношении актуальной бесконечности. Рассмотрим аргументы, предвосхищающие рассуждения Кантора.

Для начала вообразим себе огромный бальный зал, в котором находится большое, но конечное количество мужчин и женщин (см. рисунок 3). Предположим, что мы хотим узнать, кого из присутствующих больше: женщин, мужчин или же тех и других поровну. Один из способов ответить на этот вопрос состоит в том, чтобы пересчитать всех собравшихся женщин, потом мужчин и сравнить полученные данные. Поскольку это количество конечное, подсчет производится без проблем. Но есть и более изобретательный метод: когда заиграет музыка, можно попросить всех разделиться на пары (см. рисунок 4). В каждой паре должен быть один мужчина и одна женщина.

Если партнеров хватает всем и ни один мужчина и ни одна женщина не остаются без пары, то в зале одинаковое количество мужчин и женщин. Если же у всех женщин есть пара, но несколько мужчин остались одни, значит мужчин больше. Наконец, если пара есть у всех мужчин, но не у всех женщин, то в зале больше женщин.

Таким образом, если у нас имеются две законченные группы и каждый член одной из них соотносится с членом из противоположной группы так, что не остается «лишних», мы можем быть уверены, что в этих группах одинаковое количество членов. Можно ли перенести этот принцип на бесконечные группы?

От лица персонажа Сальвиати Галилей рассмотрел две конкретные группы: состоящую из натуральных чисел 0,1,2,3, 4,5,... и из квадратов чисел, получаемых при умножении числа на само себя, 0,1,4,9,16, 25,... Очевидно, считает Галилей, что если мы объединим группы квадратов чисел и не квадратов, то этих последних будет больше.

Кантор. Бесконечность в математике.

РИС.З

Кантор. Бесконечность в математике.

РИС. 4

Следовательно, в первой группе больше членов, чем во второй. На самом деле Галилей начинал считать с 1, а не с 0, как мы, но это не меняет сути.

С другой стороны, продолжает ученый, каждому числу из первой группы можно подобрать число из второй. Достаточно взять натуральное число и его квадрат.

Кантор. Бесконечность в математике.

Это распределение по парам доказывает, что натуральных чисел столько же, сколько их квадратов, и противоречит сказанному выше — тому, что натуральных чисел больше. Так что же верно? Как решить этот парадокс? Галилей отвечает так:

«[...] понятия «больший», «меньший», «равный» не имеют места не только между бесконечно большими, но и между бесконечно большим и конечным».

Другими словами, он приходит к выводу, что абсурдно сравнивать группы с бесконечными членами и нельзя сказать, что одна бесконечная группа больше, меньше или равна другой бесконечной группе. И тем не менее примерно 250 лет спустя Георг Кантор решил измерить и сравнить бесконечные группы и сделал выводы, которые и Галилей, и Аристотель сочли бы неприемлемыми. Об этом следующая глава.

«КНИГА ПЕСКА»

«Книга песка» — это рассказ аргентинского писателя Хорхе Луиса Борхеса (1899-1986) из одноименного сборника, опубликованного в 1975 году. В нем протагонист, сам Борхес, покупает у уличного торговца книгу. Выясняется, что в ней бесконечное количество страниц. У нее нет ни начала, ни конца; открыв какую-то страницу, ее невозможно найти вновь. Этот чудовищный предмет внушает Борхесу страх, но он боится, что и огонь, который сожжет бесконечную книгу, будет «тоже бесконечным», и вся планета задохнется от его дыма. Тогда Борхес решает спрятать ее на первой попавшейся полке в Национальной библиотеке Буэнос- Айреса.

Кантор. Бесконечность в математике.

Хорхе Луис Борхес, 1976 год.

ГЛАВА 2 Кардинальные числа

Аристотель, Галилей и многие другие мыслители, жившие до XIX века, безапелляционно заявляли, что говорить о количестве членов бесконечного множества не имеет никакого смысла. В 1870-е годы этот подход был еще настолько распространен, что из осторожности никто бы не поставил его под вопрос, тем более в научной статье. Однако в 1874 году Кантор впервые ввел понятие «количества элементов бесконечного множества» и обозначил его как «кардинальное число (или мощность) множества».

1 2 3 4 5 6 7 8 9 10 ... 34
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности