chitay-knigi.com » Домоводство » Магия математики. Как найти x и зачем это нужно - Артур Бенджамин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 89
Перейти на страницу:

Строго говоря, эта тема достойна отдельной книги, но, раз уж мы говорим о магии, а не о способностях человеческого мозга, коснемся ее вскользь, обозначив лишь самые основные положения. Главный прием, о котором я не устаю говорить: считайте слева направо. Подсчеты в уме – это процесс постоянного упрощения. Вы начинаете с проблемы огромной, неподъемной, кажущейся непомерно сложной, и расщепляете ее на несколько элементарных и очевидных вопросов, пока не получите искомый результат.

Сложение в уме

Допустим, нам нужно подсчитать что-нибудь, вроде

314 + 159

(Я специально записываю это уравнение в одну строку, чтобы увести вас от искушения подсчитать столбиком.) Начнем с 314, прибавив сотню, чтобы упростить подсчеты:

414 + 59

Прибавить 50 к 414 еще проще. А затем:

464 + 9 = 473

Вот и вся суть сложения в уме. Есть еще один путь, не менее эффективный: превратить проблему сложения в более простую проблему вычитания. Способ этот хорош для подсчета цен в магазине. Возьмем, к примеру, сложим

$23,58 + $8,95

$8,95 меньше $9 лишь на 5 центов, поэтому легче сначала прибавить к $23,58 именно $9, а потом вычесть $0,05. И смотрите, как все сразу упрощается:

$32,58 – $0,05 = $32,53

Вычитание в уме

Главный прием при вычитании в уме – вычитать больше, чем нужно. Если вам нужно вычесть 9, гораздо легче вычесть 10, а потом прибавить лишнюю единицу. Например,

83 – 9 = 73 + 1 = 74

Соответственно, если вам нужно вычесть 39, вычтите 40 и прибавьте 1.

83 – 39 = 43 + 1 = 44

С двух– или трехзначными (как, впрочем, и с бóльшими) числами самая правильная стратегия – дополняющие числа (потом вы еще скажете мне за это спасибо). Дополняющее число – это разность между тем числом, которым вы оперируете, и ближайшим к нему бóльшим круглым. В принципе, то же самое, что и в нашем примере с 9: в этом случае дополняющим числом будет 1, а ближайшим круглым – 10 (как и для всех однозначных чисел). Для двузначных чисел это будет 100. Посмотрите на пары чисел, которые мы складываем, чтобы получить 100. Что вы видите?

Магия математики. Как найти x и зачем это нужно

Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.

Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот зубодробительный пример вычитания превращается в простейший пример сложения! Вместо того чтобы вычитать 567, вычтем 600. Это гораздо проще, особенно если считать слева направо: 1234 – 600 = 634. Но ведь это не тот ответ, который нам нужен? Насколько не тот? Ровно на разность между 567 и 600 – такую же, как и между 67 и 100, то есть на 33. Значит,

1234 – 567 = 634 + 33 = 667

Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:

Магия математики. Как найти x и зачем это нужно

В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.

Отступление

Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26² = 676, а 18² = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?

Умножение в уме

Вы не поверите, но для того, чтобы легко умножать в уме, хотя бы примерно, достаточно выучить обычную таблицу умножения. А потом – набить руку (не беспокойтесь, учить больше ничего не придется) в решении примеров, в которых однозначное число умножается на двузначное. И снова: главный трюк – считать слева направо. Умножая, например, 8 на 24, умножьте сначала 8 × 20, а потом – 8 × 4:

8 × 24 = 8 × 20 + 8 × 4 = 160 + 32 = 192

Хорошо потренировавшись, переходите к перемножению одно– и трехзначных чисел. Это немного сложнее – просто потому, что чуть больше нужно держать в уме. Трюк в том, чтобы последовательно складывать промежуточные результаты и тем самым своевременно освобождать свою «оперативную» память. Например, при умножении 456 × 7 вашим предпоследним действием должно быть сложение 2800 + 350, а последним – прибавление 42.

Магия математики. Как найти x и зачем это нужно

Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя бы потому, что способов, которыми можно достичь нужного результата, много и все они разные. Это значит, что вы можете проверить себя – и одновременно насладиться стройностью арифметических чудес. Рассмотрим всего один пример: 32 × 38.

Самый популярный (и наиболее близкий к подсчету в столбик) метод – это метод сложения, безотказный в решении почти любой задачи. Он предлагает нам разбить одно из чисел (обычно то, которое состоит из меньших цифр) надвое, умножить каждую часть на второе число, а потом сложить результаты. Например,

32 × 38 = (30 + 2) × 38 = 30 × 38 + 2 × 38 =…

Как будем умножать 30 × 38? Сначала умножим 3 × 38, а в конце прибавим 0. То есть 3 × 38 = 90 + 24 = 114, поэтому 30 × 38 = 1140. А потом 2 × 38 = 60 + 16 = 76. В итоге

1 2 3 4 5 6 7 8 9 10 ... 89
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности