chitay-knigi.com » Домоводство » Магия математики. Как найти x и зачем это нужно - Артур Бенджамин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 89
Перейти на страницу:

Эта книга написана для тех, кто когда-нибудь захочет пройти курс математики, и для тех, кто сейчас проходит курс математики, или для тех, кто только что прошел курс математики. Иными словами – абсолютно для всех, вне зависимости от того, обожаете вы математику или боитесь ее как огня. Чтобы сделать наше общение проще, я сформулировал несколько «правил» (в математическом понимании этого слова).

Правило № 1:

Текст в серых блоках можно не читать (но только не этот)!

В каждой главе есть «отступления», в которых я рассказываю о чем-то интересном, что упомянуто в основном тексте, но в логику рассуждений не вписывается: это может быть лишний пример, подробное доказательство или информация, рассчитанная на более искушенного читателя. При первом чтении (равно как и при втором или третьем) вам, возможно, захочется эти «отступления» проигнорировать. Но я очень надеюсь, что вам все же захочется перечитать эту книжку: математика – такая вещь, к которой хочется возвращаться снова и снова.

Правило № 2. Не бойтесь пропускать отдельные абзацы, разделы или даже главы. Если чувствуете, что застряли и никак не можете осилить ту или иную часть, смело поступайте с ней так же, как и с отступлениями – вернитесь к ним позже, со свежими силами и свежим взглядом. В конце концов, быть может, следующая глава прольет свет на то, что сейчас кажется непроходимой чащей? Обидно остановиться на полпути и пропустить все самое интересное, правда?

Правило № 3. Обязательно прочитайте последнюю, главу 12. В ней рассказано столько всего о математической бесконечности, что голова у вас пойдет кругом, ведь в школе вас этому наверняка не учили. К тому же, очень мало из того, что написано в главе 12, связано с предыдущими главами. С другой стороны, «очень мало» – не значит «все», а значит, у вас будет отличный стимул перечитать то, что осталось не до конца понятым.

Правило № π. Готовьтесь к неожиданностям. Хотя математика – вещь очень серьезная и важная, изучать ее по учебникам, написанным строгим и сухим языком, никакой необходимости нет. На лекциях, которые я читаю в Колледже Харви Мадда[1], мне редко удается обойтись без случайного каламбура, шутки, стихотворения, песенки или фокуса с числами – они отлично разбавляют атмосферу мрачной научной серьезности. Так почему бы не заняться тем же и на страницах этой книги? В одном вам однозначно повезло: не нужно будет слушать, как я пою. Чем не плюс?

Вот и все правила. Хватайте их подмышку и вперед – в удивительный мир математической магии!

Глава номер один Магия чисел
Магия математики. Как найти x и зачем это нужно
Числовые закономерности

Изучение математики всегда начинается с чисел. Сначала мы учимся выражать количество с помощью букв, цифр или самих предметов. А потом долгие и долгие годы складываем, вычитаем, умножаем, делим и решаем разные арифметические задачи. И за всей этой рутиной часто не видим магию чисел, способную развлечь и удивить любого, кто решится всего лишь заглянуть чуть глубже.

Вот, например, одна хитрость, с которой еще в детстве столкнулся немецкий математик Карл Фридрих Гаусс[2]. Как-то раз на уроке математики учитель попросил класс сложить между собой всей числа от 1 до 100. Вряд ли он хотел развлечь учеников – скорее, отвлечь: заставить заняться чем-нибудь нудным и требующим полного сосредоточения, а самому спокойно сделать другую работу. Представьте себе его удивление, когда через несколько секунд Гаусс вышел к доске и написал ответ – 5050. Хотите знать, как он это сделал? Он просто представил все эти числа в виде двух рядов: верхний – от 1 до 50, нижний – от 51 до 100, причем в нижнем ряду числа шли в обратном порядке, вот так:

Магия математики. Как найти x и зачем это нужно

Гаусс заметил, что сумма чисел в каждом из 50 столбцов одинаковая – 101, а значит, для того, чтобы получить искомый результат, нужно всего лишь умножить 101 на 50. Так у него и получилось 5050.

Собственно говоря, благодаря такой вот способности – не быстро считать в уме, но заставлять числа плясать под свою дудку – Гаусс и стал одним из величайших математиков XIX столетия. В этой главе мы как раз и поговорим об интересных числовых закономерностях и, конечно, увидим танец чисел. Одни из этих примеров полезны тем, что развивают способности умственного счета, другие – просто красивы.

Только что мы последовали путем гауссовой логики, чтобы получить сумму первой сотни простых чисел. Но что, если нам нужна сумма 17 из них? Или тысячи? Миллиона? Логика Гаусса позволяет подсчитывать сумму первых n чисел, где n – любое нужное вам количество! Некоторым людям легче разобраться с математическими абстракциями, если они могут их визуализировать. К примеру, числа 1, 3, 6, 10 и 15 иногда называют треугольными, потому что, заменив их соответствующим количеством кружков, можно легко сложить треугольники, вроде того, что изображен чуть ниже (конечно, один кружок треугольником можно назвать с очень большой натяжкой, но число 1, несмотря на это, все же считается треугольным). Согласно определению, треугольное число n равняется 1 + 2 + 3 +… + n.

Магия математики. Как найти x и зачем это нужно

Посмотрите, что произойдет, если мы расположим два треугольника основаниями друг к другу, вот так:

Магия математики. Как найти x и зачем это нужно

У нас получился прямоугольник из 5 рядов и 6 столбцов – всего 30 кружков. Значит, в каждом из двух наших треугольников была половина общего их количества, то есть по 15 кружков. Мы, это, разумеется, уже знаем, но давайте применим этот же принцип к двум прямоугольникам, количество рядов в которых равно n. Точно так же составим из них прямоугольник с n рядов и n + 1 столбцов. Кружков в нем будет n × (n + 1) – ну или в более привычной записи – n(n + 1). В результате мы получим формулу, которая позволит нам подсчитывать сумму первых n чисел:

Магия математики. Как найти x и зачем это нужно

1 2 3 4 5 6 7 8 9 10 ... 89
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности