Шрифт:
Интервал:
Закладка:
Все обитатели этого «зверинца» сенсорных клеток очень разнообразны по базовым структурам, но связь с мозгом для них всех осуществляется по одной и той же схеме[33]. Чтобы понять, как эти рецепторы связаны с головным мозгом и его стволом, осмотр надо начать с соединений ствола головного мозга или дорсальных корешковых ганглиев (спинного мозга), расположенных вдоль позвоночника. Отсюда, от клеток этих ганглиев, тянутся аксоны, которые называются сенсорными афферентами. Эти аксоны своего рода проводка, по которой идет электрический импульс, сигнализирующий мозгу о прикосновении. Информация от сенсорных клеток передается в разные области мозга – в точном соответствии с ее видом. Например, нервные клетки, воспринимающие вибрацию, и клетки, специализирующиеся на текстуре поверхности, передают информацию разным участкам соматосенсорной коры.
Рис. 8.1. Типы клеток, проводящих осязательные ощущения через кожу
В качестве примера того, как сенсорный рецептор связан с соматосенсорной корой, рассмотрим, как мозг обрабатывает прикосновение. Когда человек дотрагивается до небольшого предмета кончиком пальца, тельца Мейснера искажаются силой прикосновения. Это провоцирует реакцию в нервных окончаниях, и те запускают потенциал действия. Электрический сигнал от этого потенциала действия проходит через аксон воспринимающей клетки и соединяется со спинным мозгом, откуда поступает в головной мозг. Достигнув мозга, потенциал действия идет по одному из нескольких маршрутов к сенсорной коре. Как только сигнал достигает сенсорной коры, он обрабатывается и сопрягается с миндалевидным телом и гиппокампом, подкрепляя таким образом память об ощущении. Маршруты других потенциалов действия, генерируемых различными механосенсорными клетками, организованы аналогичным образом.
По словам Дэвида Линдена и других нейробиологов, для осязания в мозге предназначены два основных проводящих пути нервной системы. Первый я только что описывал и еще упоминал его в главе 2. Линден указывает, что этот путь оканчивается в соматосенсорной коре головного мозга, куда передается информация с органов осязания. А дальше кора «воспринимает факты, поэтапно обрабатывая информацию, постепенно создает тактильные образы и распознает предметы». Другой проводящий путь связан с эмоциональным и социальным контекстом. Данные, полученные через осязание и распознавание объектов, интерпретируются при помощи двухступенчатой обработки, чтобы повлиять на наше социальное и эмоциональное поведение. И влияние это очень значительное: люди могут очень по-разному реагировать на все, что связано с прикосновениями.
Еще пять лет назад можно было с уверенностью сказать, что вариативность человеческого осязания – область малоизвестная. Исследователи знают, что некоторые индивиды чрезвычайно чувствительны к тактильным проявлениям. У многих людей с расстройствами аутистического спектра часто развивается непереносимость прикосновений. Им неприятен любой телесный контакт: он не обязательно болезненный для них, просто антипатический. И это не потому, что у них повышенная чувствительность и их нервы оголены, скорее здесь замешан социальный аспект. Кстати, тактильную чувствительность можно снизить. Как и в случае со слухом и равновесием, осязательная способность у людей, как правило, с возрастом ухудшается. Проблемы со здоровьем тоже могут сказаться на осязании. Дефицит витамина В12, диабет и инсульт могут привести к потере чувствительности некоторых частей тела. Для наследственных синдромов тоже характерны такие проявления. Например, синдром Райли – Дея поражает сенсорные нервные клетки и вызывает множество симптомов, в том числе снижение чувствительности органов осязания. Это так называемый аутосомно-рецессивный синдром, что означает: во-первых, он находится на одной из аутосом (неполовых хромосом) в геноме, а во-вторых, что нужно иметь две копии гена, который вызывает расстройство. Этот синдром чаще обычного встречается у евреев-ашкенази. Обычно человек наследует аномальные копии генов от родителей, которые были носителями. Эти родители гетерозиготны (то есть у них одна нормальная копия гена и одна ненормальная), поэтому у них признаки синдрома не выражены. Мутировавший ген, вызывающий этот синдром, известен: он называется IKBKAP. Этот ген делает белок, важный для транскрипции других генов в матричную РНК. Но его связь с этим расстройством совсем не очевидна.
Существуют и другие генетические нарушения, например болезнь Шарко – Мари – Тута (ШМТ). Этот синдром тоже является аутосомно-рецессивным генетическим признаком, и его симптом – потеря осязания (и потеря способности чувствовать боль) в конечностях: руках, ногах и стопах. Известно, что люди с этим расстройством часто получают различные повреждения и травмы из-за отсутствия чувства боли. Проявляются у них и проблемы с равновесием: не из-за нарушений в вестибулярной системе, а потому, что они не могут адекватно осознать, где находятся их ноги.
Профессор и врач Джеймс Лупски живет с болезнью ШМТ уже больше сорока лет. Считается, что в это заболевание вовлечены множественные генетические поражения, но в случае Лупски было трудно найти что-то с помощью методов, доступных в 2010 году. Поэтому профессор и команда ученых решили секвенировать его геном и геномы членов его семьи. Секвенируя три миллиарда оснований его генома, они надеялись установить генетическую основу особого вида ШМТ, который был у Лупски. У членов семьи не было проявлений этого синдрома, и поэтому была возможность найти ген, ответственный за ШМТ, используя перекрестное связывание цепочки их ДНК с ДНК Джеймса. Это было то же самое, что искать иголку в стоге сена, но Лупски и его коллеги справились с задачей: они нашли виновника – это был ген SH3TC2.
Вот как они это сделали. Каждая цепочка ДНК – это длинная линейная молекула, состоящая из четырех нуклеотидных оснований (G, A, T и C), последовательность которых образует наши гены. Расположение G, A, T и C диктует клеткам, какие именно белки надо создавать: например, белок, присутствующий в структуре нервной клетки. Генетический код указывает, что различные аминокислоты в белке кодируются в ДНК триплетами нуклеотидов. На иллюстрации, где изображена последовательность части гена SH3TC2 (рис. 8.2), я отделяю последовательность на каждом третьем основании, потому что триплеты ДНК кодируют аминокислоты в белках.
Рис. 8.2. Частичная последовательность гена SH3TC2
Следующая иллюстрация – это та часть белка, для которой кодируется ДНК (рис. 8.3). Буквы под последовательностью ДНК – это аббревиатуры, обозначающие двадцать аминокислот в белках, а цифры над ней – это позиции в белке, пронумерованные от его начала. Лупски с командой сканировал свой геном на наличие тех мест, где тот отличался от эталонной человеческой последовательности (последовательности человека без ШМТ), и идентифицировал их. Эти позиции называются однонуклеотидными полиморфизмами (SNP). Исследователи должны были просеять 3 420 306 SNP. Они быстро исключили 2 255 103 SNP, потому что те не принадлежали к области известных генов. После этого им оставалось отсортировать 1 165 204 SNP. Тогда они исключили области, которые были в генах, но не кодировали аминокислоты (такие как интроны). Это сузило поиск до 18 406 SNP – неплохо, да? Но все равно та еще работенка.