chitay-knigi.com » Домоводство » Кантор. Бесконечность в математике. - Густаво Эрнесто Пинейро

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 34
Перейти на страницу:

Дедекинд, который тоже работал в то время с понятиями теории множеств, казалось, не замечал никаких парадоксов, и сам Кантор после депрессии, поразившей его в 1884 году, полностью оставил эту тему на продолжительное время. Вопрос парадоксов теории множеств канул в Лету и был «открыт вновь» в 1897 году.

Кантор. Бесконечность в математике.

Схема парадокса Кантора, по которому существует множество, большее, чем то, которое уже содержит в себе все.

КОНГРЕСС 1897 ГОДА

С 9 по 11 августа 1897 года в Цюрихе (Швейцария) проходил Первый международный конгресс математиков, в котором приняли участие более 200 ученых из 16 стран мира, в том числе Гильберт и Кантор. На этом конгрессе теория множеств получила международное признание, а многие выступления были посвящены применению понятий теории множеств — в основном в области исчисления.

Кто из нас не обрадовался бы, если бы ему удалось поднять пелену, скрывающую будущее, увидеть будущий прогресс нашей науки и тайны ее развития в последующие века?!

Давид Гильберт на Втором международном конгрессе математиков

В беседах, которые участники вели между заседаниями, постоянно проявлялся волнующий всех вопрос... об открытии парадокса в теории множеств. В марте 1897 года в бюллетене Палермитанского математического кружка итальянский логик и математик Чезаре Бурали-Форти (1861-1931) опубликовал статью под названием «Вопрос о трансфинитных числах», в которой вновь открывал парадокс об ординальных числах. В 1883 году Кантор не дал точной формулировки парадокса, и он стал известен только после знаменитой работы Бурали- Форти, посему и получил его имя. Интересно, что итальянский ученый тоже присутствовал на конгрессе и выступил с докладом, правда по геометрии.

Гильберт, большой сторонник теории множеств, был крайне обеспокоен выявлением парадокса и в 1897 году начал интенсивную переписку с Кантором. В ходе этого обсуждения Кантор вновь выразил свою убежденность в том, что всех парадоксов в теории множеств можно было избежать, проведя различие между трансфинитным и абсолютным, хотя в письмах он не использовал эти термины, а говорил о «доступном» и «недоступном» (а иногда о «существенных» и «несущественных» множествах).

По Кантору, доступные множества — это такие множества, которые мы можем назвать и свойства которых мы можем изучить; недоступные же находятся вне нашего понимания, поэтому если мы будем пытаться анализировать их, то рискуем столкнуться с противоречиями. Проблема была не во множествах самих по себе, а в конечном и ограниченном рассудке, неспособном понять определенный тип множеств. Гильберта не убеждала такая постановка вопроса, он полагал, что если мы в состоянии постичь определение множества, то должны быть в состоянии и познать все его свойства. Мысль о том, что существуют непознаваемые математические объекты, была противна философии математики Гильберта, которую можно охарактеризовать его знаменитой максимой «Мы должны знать. Мы будем знать», произнесенной на конференции в честь открытия Второго международного конгресса математиков в 1900 году. Она выражает его твердую уверенность в том, что неразрешимых математических задач не существует. Интереснейший спор в письмах между Гильбертом и Кантором трагически прервался в 1899 году, так и не завершившись решением, которое устроило бы обе стороны.

ЧЕЗАРЕ БУРАЛИ-ФОРТИ

Бурали-Форти родился в Ареццо, в Италии, 13 августа 1861 года. Он изучал математику в Пизанском университете, где в 1884 году защитил диплом.

Докторскую степень ему получить не удалось, поскольку диссертационный комитет отверг его предложение рассматривать геометрию с алгебраической точки зрения (сегодня общепринятой), а ученый не стал настаивать на своем. До 1887 года он был учителем математики в пизанской школе, а потом переехал в Турин, где преподавал в военной академии до конца своей карьеры. Отсутствие докторской степени не позволило ему работать в высших школах, однако в Туринском университете он прочитал несколько лекций, получивших высокую оценку. Там же он установил контакты, хотя и неформальные, со многими учеными. Бурали-Форти написал более 200 статей по геометрии, логике и о преподавании математики. Он умер в Турине 21 января 1831 года.

Кантор. Бесконечность в математике.

ПОСЛЕДНИЕ ГОДЫ

В конце 1899 года Кантор готовил третью часть своей статьи «Обоснование учения о трансфинитных множествах», которую хотел посвятить главным образом изложению своего решения парадоксов теории множеств, но 16 декабря 1899 года его работу прервала трагическая гибель младшего сына Рудольфа. Ему было всего 13 лет.

Эта ужасная потеря, от которой Кантор так никогда и не оправился, повлекла за собой серьезное душевное расстройство. А может, болезнь скрыто протекала и до этого, а трагедия сделала ее явной. В последующие годы периоды просветления сменялись депрессией. Несколько раз ученый оказывался в психиатрической лечебнице в Галле. В годы болезни Кантор вернулся к теме авторства Шекспира и Бэкона, которую он на самом деле никогда не оставлял. Об этом свидетельствует фраза в письме Гильберту 15 ноября 1899 года: «Этой зимой я дам пять уроков в Берлине и пять в Лейпциге на ту же тему [вопрос о Шекспире и Бэконе], в которой я разобрался до конца; господа филологи будут поражены».

В подтверждение того, что после 1900 года его интерес к этому вопросу стал настоящим «помешательством», можно привести случай, произошедший в 1911 году. В сентябре того года Кантор как почетный академик был приглашен в Шотландию на празднование 500-летия Сент-Эндрюсского университета. После обнаружения в 1902 году так называемого парадокса Рассела вопрос о логических противоречиях в теории множеств в математике вышел на первый план. Поэтому, когда Кантор взошел на трибуну университета, чтобы прочитать доклад, все ожидали услышать рассуждения о парадоксах бесконечности. Кантор же стал говорить о Бэконе как авторе шекспировских пьес. Тем не менее в следующем году Сент- Эндрюсский университет присудил Кантору степень почетного доктора, но ученый в тот момент был уже серьезно болен и не смог присутствовать на церемонии.

Сущность математики состоит в ее свободе.

Георг Кантор, 1883 год

Несмотря ни на что в первые годы своей болезни Кантор не оставлял занятия математикой. Он продолжал преподавать в Галле, хотя периодически подолгу отсутствовал из-за болезни (например, весь 1909 год), он выступил с лекциями о парадоксах теории множеств на собрании Немецкого математического общества в сентябре 1903 года, а также в Гейдельберге (Германия) в августе 1904 года. Однако он так и не закончил третью часть своих «Обоснований» и не опубликовал больше ни одной статьи по математике.

1 ... 25 26 27 28 29 30 31 32 33 34
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности