Шрифт:
Интервал:
Закладка:
Масса коры мозга, об эволюции которой мы говорили выше, составляет около 82 % массы всего человеческого мозга. Удивительно, но на нее приходится лишь 19 % (около 16 миллиардов) нейронов мозга. Для сравнения в человеческом мозжечке — важнейшем скоплении серого вещества, отвечающем за контроль двигательной функции, на долю которого приходится лишь 10 % массы мозга, — упаковано около 69 миллиардов нейронов, так что это очень плотный кластер нейронов. Однако мозжечок, насколько мы можем судить, не сочинял сонетов и пьес Шекспира и не проектировал космических кораблей, позволяющих нам осваивать космическое пространство (хотя он помогал их строить). Вот почему с этого момента, говоря о том, каким образом Истинный творец всего справляется со своими самыми сложными задачами, мы будем в основном обращать внимание на новую кору.
В оптимизации работы коры важнейшую роль играет сложная сеть белого вещества. Несколько плотных упаковок нервных волокон (рис. 4.1) белого вещества образуют петли, связывающие между собой скопления серого вещества. Я называю эти петли биологическими соленоидами — по аналогии с катушками в электромагнитах. Самой крупной из этих биологических катушек является мозолистое тело.
Рис. 4.1. Типичные петли белого вещества коры, наблюдаемые при помощи диффузионно-тензорной томографии (изображения любезно предоставлены Алленом Сонгом).
Мозолистое тело — это толстый слой ткани примерно из 200 миллионов нервов, расположенный вдоль продольной оси головного мозга, который обеспечивает обмен информацией между двумя полушариями мозга и координацию их активности. Между задней и передней частями мозолистого тела коры имеются значительные структурные различия, включающие в себя среди прочего плотность и диаметр аксонов, проводящих электрические импульсы (так называемые потенциалы действия), а также степень миелинизации аксонов. Особый тип поддерживающих клеток мозга образует вокруг нервных волокон слой миелина. Обертывание нервных волокон слоем миелина обеспечивает крайне высокую скорость передачи потенциала действия миелинизированными аксонами. Как следствие, миелинизированные нервы затрачивают на процесс передачи меньше энергии. Например, если немиелинизированное нервное волокно группы C диаметром 0,2–1,5 мкм проводит потенциал действия примерно со скоростью 1 м/с, в крупном миелинизированном волокне такой же электрический импульс перемещается со скоростью около 120 м/с, или более 400 км/ч. Таким образом, время передачи информации между полушариями по всей длине волокна весьма разнится в зависимости от того, из какого участка коры поступают сигналы. В целом эти различия в скорости передачи сигнала статистически описываются распределением в форме широкой колоколообразной кривой. Например, в соответствии с этим распределением обмен информацией между полушариями в моторных и сенсорных областях происходит очень быстро, поскольку они соединены толстыми миелинизированными аксонами мозолистого тела. Напротив, связь между так называемыми ассоциативными зонами в лобной и теменной долях осуществляется намного медленнее.
Мы точно не знаем, каким образом 200 миллионов волокон мозолистого тела координируют работу двух полушарий мозга. Однако мы знаем, что мозолистое тело действительно их синхронизирует, поскольку при его удалении полушария начинают действовать независимо. Глубокие исследования пациентов с так называемым расщеплением мозга начались много десятилетий назад, когда соответствующий тип хирургического вмешательства стали использовать для предотвращения распространения серьезных нарушений с одного полушария мозга на другое. В 1981 году американский нейробиолог Роджер Сперри был удостоен Нобелевской премии по медицине[12] за прорыв в изучении пациентов с расщепленным мозгом и функции мозолистого тела.
У большинства людей некоторые ключевые функции мозга, такие как речь, латерализованы в коре, т. е. осуществляются в основном в одном из полушарий (так, у правшей за речь отвечает левое). В результате латерализации пациенты с расщепленным мозгом не всегда могут описать словами то, что они видят. Например, если какое-то изображение находится в левой части их поля зрения или если их просят держать левой рукой предмет, который они не видят, они просто не могут назвать или описать этот предмет или изображение. И дело не в том, что они не знают ответа на вопрос. Знают. Проблема в том, что стимулы, поступающие с левой стороны, обрабатываются правой частью мозга. Поскольку мозолистое тело отсутствует, правое полушарие не способно сообщаться с речевой зоной левого. На самом деле пациенты с расщеплением мозга могут левой рукой выбрать из набора предметов один предмет, который идентичен тому, что они держали за минуту до этого; они осознают, что видят и до чего дотрагиваются. Но они не могут об этом рассказать.
Внутри каждого полушария находится множество других крупных петель и пучков белого вещества, связывающих между собой разные области коры. Одна из таких систем, обеспечивающая важную связь между лобной, теменной и височной долями, образована тремя плотно упакованными нервными пучками с очень высокой проводимостью. Первый из них называется крайней (наружной) капсулой и обеспечивает связь между ключевыми участками височной доли (например, находящимися в верхней височной борозде, sulcus temporalis superior, STS, и нижней височной зоне) и нижней частью префронтальной коры. Вторая система, связывающая STS с участком теменной коры, образована так называемыми медиальными и задними продольными пучками. Наконец, существует верхний продольный пучок, осуществляющий связь между теменной и лобной долями. Вместе эти три пути вовлечены в обеспечение таких ключевых функций, как речь, изготовление орудий и мимикрия движений.
Еще один важнейший скоростной коммуникационный путь мозга — кортико-таламо-кортикальная петля, которая обеспечивает взаимодействие между корой и таламусом — важнейшей субкортикальной структурой, получающей основной поток сенсорных данных от периферических нервов. Поэтому этот мультимодальный сенсорный путь является важнейшим элементом в механизме непрерывного сравнения данных между уже имеющимися у мозга данными и набором сырой информации, поступающей из внешнего мира. Эта петля также играет важную роль в синхронизации электрической активности коры и таламуса.
Еще одна важная особенность человеческого белого вещества заключается в его развитии. По сравнению с мозгом наших родственников шимпанзе человеческий мозг на момент рождения организма еще сравнительно неразвит и достигает зрелости только через два десятилетия. Кроме того, хоть мы и рождаемся примерно с тем количеством нейронов, которое будем иметь на протяжении всей жизни, на пик своего функционирования белое вещество выходит лишь через тридцать или даже сорок лет. В частности, в префронтальной зоне лобной доли связи между нейронами (как синапсы, проводящие потенциалы действия между нейронами, так и дендриты, принимающие эти сообщения) достигают полной зрелости только на третьем десятке жизни. Все это означает, что процесс увеличения объема мозга после рождения связан с разрастанием и усложнением белого вещества. Этот длительный процесс созревания (и возможность его нарушения) объясняет подверженность человека ментальным