Шрифт:
Интервал:
Закладка:
О том, как выглядели первые животные, мы почти ничего не знаем, ведь их мягкие тела не подвергались процессу окаменения. Они приходили и уходили, словно легкий порыв ветра, не оставляя ни единого следа. Зато мы можем строить на их счет вполне обоснованные предположения. Каждое современное животное – это многоклеточное существо, которое развилось из полого сгустка клеток, и ему для выживания нужно питаться, так что логично будет предположить, что эти черты были присущи и нашему общему предку[92]. Значит, возможно, эти розетки – современные образы первых животных. А процесс их создания – деление одной клетки в сплоченную колонию – воспроизводит эволюционный переход, в ходе которого появились сначала примитивные животные, а потом и белки, голуби, утки, дети и все остальные зверушки в парке, в котором мы с Кинг болтаем. Изучая этих безобидных малоизвестных одноклеточных созданий, она практически вплотную подбирается к покрытому тайной зарождению всего нашего царства животных.
Отношения с S. rosetta у нее довольно бурные. Она знала, что в естественных условиях они формируют колонии, но уговорить их повторить то же самое в лаборатории у нее никак не получалось. В руках у нее и у других ученых социальные прежде существа загадочным образом становились одиночками. Она меняла им температуру, уровень питательных веществ, кислотность – бесполезно. В отчаянии она решила заняться секвенированием генома S. rosetta, но и там ее ждали сложности. Кинг кормила S. rosetta бактериями, но теперь ей пришлось избавиться от их клеток, чтобы те не засоряли результаты секвенирования. Она накормила хоан антибиотиками и, к ее удивлению, полностью лишила их способности образовывать колонии. Если раньше они формировали их неохотно, то теперь вообще наотрез отказывались. Значит, за их социальный образ жизни в какой-то мере отвечали бактерии.
Аспирантка Рози Алегадо изолировала микробов из образцов воды без антибиотиков и по очереди стала скармливать их хоанам. Розетки начали снова появляться лишь благодаря одной бактерии из 64. Потому первые опыты Кинг и не удавались – S. rosetta образуют колонии лишь при встрече с нужным микробом. Алегадо его идентифицировала и назвала Algoriphagus machipongonensis – неизвестный прежде вид из группы Bacteroidetes, представители которой живут у нас в кишечнике[93]. Она же выяснила, как именно бактерии побуждают хоан к образованию розеток: они вырабатывают жироподобную молекулу RIF-1. «Я назвала ее RIF, «розеткоиндуцирующий фактор», и добавила номер, потому что наверняка есть и другие», – говорит Рози. И она была права: с тех пор ученые идентифицировали еще несколько молекул, подталкивающих хоан к общественной жизни, у многих других микробов[94].
Как предполагает Алегадо, эти вещества сигналят о том, что где-то рядом есть еда. Группа хоан лучше справится с ловлей бактерий, чем одна, так что, почувствовав неподалеку бактерию, они объединяются. «Думаю, хоаны «подслушивают», – размышляет Алегадо. – Плавают они медленно, а бактерии подсказывают им, что они попали туда, где много еды и ресурсов. Тогда можно и розетку образовать».
Что из всего этого следует? Неужели первые животные появились благодаря тому, что бактерии спровоцировали наших одноклеточных предков на образование многоклеточных колоний? Кинг советует подходить к этому вопросу с осторожностью. Современные хоанофлагелляты – наши кузины, а не бабули. Если на основе их поведения можно будет выяснить, как вели себя древние хоаны и как они реагировали на древних микробов, это станет огромным прорывом в науке. Кинг пока в этом не уверена. Сейчас она хочет выяснить, реагируют ли современные животные на бактерий таким же образом и, если да, влияют ли бактерии на развитие хоан и животных с помощью тех же самых молекул. Это существенно укрепило бы теорию о том, что у наших истоков стоял этот древний феномен. «Думаю, никто не станет спорить, что в океанах, где появились первые животные, было множество бактерий, – рассуждает Кинг. – Разных видов бактерий. Они правили миром, а животным приходилось под них подстраиваться. Без натяжки можно полагать, что какие-то из производимых бактериями молекул повлияли на развитие первых животных». Действительно без натяжки – особенно если учесть, что до сих пор творится в Перл-Харбор.
Утром 7 декабря 1941 года эскадрилья японских истребителей нанесла внезапный удар по базе военного флота США, расположенной в бухте Перл-Харбор на Гавайях. Первым потонул линкор «Аризона», унеся с собой жизни более тысячи офицеров ВМС и членов экипажа. Остальные семь линкоров в бухте были разрушены или получили значительные повреждения, как и еще 18 кораблей и 300 воздушных судов. Сейчас в этой бухте куда более спокойно. Хоть она и является по-прежнему важным военным портом и в ней до сих пор стоят несколько громадных кораблей, угроза для нее в первую очередь исходит не с неба, а с моря.
Узнать, что происходит с потонувшими кораблями, можно, кинув в воду что-нибудь металлическое. Через несколько часов на металле начнут расти бактерии. Возможно, за ними последуют водоросли, затем моллюски или морские желуди. Но в течение нескольких дней там появятся белые трубочки. Они маленькие – длиной всего в несколько сантиметров и толщиной в несколько миллиметров. Но вскоре их становятся сотни. Потом тысячи. Миллионы. В конце концов вся поверхность начинает выглядеть как ковер с грубым ворсом на морозе. Эти трубочки вскоре оказываются всюду – на камнях и сваях, на металлических рыболовных сетях и кораблях. Если авианосец постоит в бухте несколько месяцев, трубочки образуют на его корпусе слой в несколько сантиметров. По-научному это называется «биообрастание», а по-простому – «жуткий геморрой». Время от времени ВМС отправляет к кораблям дайверов, и те укрывают пропеллеры и другие открытые конструкции полиэтиленом, чтобы белые трубочки до них не добрались[95].
И создатель, и житель каждого белого цилиндрика – животное. На флоте его называют «червяк-закорючка» (squiggly worm), а Майклу Хэдфилду, морскому биологу при Гавайском университете, оно известно как полихета Hydroides elegans. Открыли ее в Сиднейской бухте, и с тех пор она объявилась в Средиземном море, у Карибских островов, у берегов Японии, у Гавайев – везде, где есть корабли и теплая вода. Цепляясь снизу за судна, построенные человеком, эта профессиональная безбилетница захватила весь мир.
Хэдфилд начал исследовать «червяков-закорючек» в 1990 году по требованию ВМС. Он уже тогда был экспертом по обитающим в морях личинкам, и в ВМС хотели, чтобы он протестировал различные предохраняющие от обрастания краски и выяснил, способны ли какие-то из них отталкивать червей. Однако, как он решил, важнее будет узнать, что именно толкает червей на заселение. Почему они ни с того ни с сего появляются на корпусе судна?
Этот вопрос появился еще в древности. Арман Мари Леруа в своей замечательной биографии Аристотеля пишет: «Как-то, по словам Аристотеля, дивизия кораблей отчалила от острова Родос, и за борт было выброшено множество глиняной посуды. В горшках начал скапливаться ил, затем появились живые устрицы. Устрицы не смогли бы сами залезть в горшки или куда-либо еще – значит, они появились из ила»[96]. Теория самопроизвольного зарождения на протяжении веков оставалась популярной, но при этом безнадежно неверной. Факты, стоящие за внезапным появлением устриц и полихет, на деле куда банальнее. У этих животных, как и у кораллов, морских ежей, мидий и омаров, есть стадия личинки, на которой они плавают себе по открытому океану, пока не найдут местечко, где можно поселиться. Личинки эти микроскопически малы, существуют в огромных количествах (в одной капле морской воды их может быть до сотни) и нисколько не похожи на взрослых особей. Детеныш морского ежа напоминает скорее воланчик, чем игольницу, в которую потом превратится. Личинка H. elegans выглядит как гитарный медиатор с глазками, но точно не как длинный червь в трубке. С трудом верится, что это одно и то же животное.