Шрифт:
Интервал:
Закладка:
Только представьте, что произойдет, если ученые смогут поместить физическую активность в бутылочку!
Если в мозге растут новые клетки, нужно и какое-то «удобрение» для них. С самого начала ученые полагали, что эту функцию должны выполнять нейротрофины. Исследователи давно узнали, что без белков BDNF, этих «помощников роста Miracle-Gro», мозг не в состоянии воспринимать новую информацию. Теперь они поняли, что без нейротрофинов новые нейроны вообще не могут образовываться.
Белок BDNF концентрируется в особых резервуарах поблизости от синапсов и выбрасывается в нейронную инфраструктуру при активизации жизненных процессов. В этом также принимают участие некоторые гормоны. Среди них IGF-1 – инсулиноподобный фактор роста (ИФР), VEGF – фактор роста эндотелия сосудов (ФРЭС) и FGF-2 – фактор роста фибробластов (ФРФ). Во время физической активности эти гормоны активно поступают в организм через разветвленную систему капилляров, которые предотвращают попадание в кровь объемных чужеродных тел, таких как бактерии. Только недавно ученые узнали, что при поступлении в мозг эти гормоны взаимодействуют с нейротрофинами, запуская молекулярный процесс обучения. Они также генерируются в самом мозге и способствуют делению в нем стволовых клеток, особенно во время нагрузок. Очень важно, что эти гормоны обеспечивают прямую связь между нашим телом и мозгом.
Возьмем, например, инсулиноподобный фактор роста, который образуется в мышцах, когда они испытывают недостаток питательных веществ при упражнениях. Глюкоза – это главный источник энергии для мышц и единственный – для мозга. ИФР работает вместе с инсулином для обеспечения клеток энергией. Интересно, что он связан еще и с обучением. Возможно, в доисторические времена его действие как-то помогало людям находить пищу. Во время физических упражнений нейротрофины помогают мозгу увеличивать производство инсулиноподобного фактора, а он активизирует нейроны для выработки ими сигнальных нейромедиаторов – серотонина и глутамата. Он также способствует возникновению в нейронах большего числа рецепторов нейротрофинов, что усиливает нейронные связи и консолидирует нашу память. Судя по всему, нейротрофины особенно важны для формирования долговременной памяти.
Этот механизм очень разумен с точки зрения эволюции. Абстрагируясь от научных терминов, скажем: главная причина, по которой нашим предкам необходима была способность к обучению, заключалась в приобретении навыка поиска и добычи пищи, а также ее сохранения. Мы нуждаемся в энергетических ресурсах, чтобы учиться; нам требуется способность к обучению, чтобы находить источники энергии. Все сигналы, исходящие от тела, поддерживают эти процессы, позволяют приспосабливаться к окружающим условиям и выживать.
Чтобы доставлять энергию к образованным клеткам, необходимы новые кровеносные сосуды. Когда организму не хватает кислорода, как это бывает во время систематического напряжения мышц при повышенной физической активности, в действие вступает фактор роста эндотелия сосудов, создающий много новых микрососудов – капилляров – в теле и мозге. Ученые подозревают: одна из причин исключительной важности этого фактора в нейрогенезе – то, что гормон VEGF (ФРЭС) существенно изменяет гематоэнцефалический барьер (ГЭБ)[18], позволяя другим гормонам проникать в мозг во время нагрузок.
Наш организм производит еще один важный элемент, который поступает в мозг: это фактор роста фибробластов, FGF-2 (ФРФ), активно вырабатывающийся при физической активности наряду с IGF-1 (ИФР) и VEGF (ФРЭС). Этот гормон помогает росту тканей, и он чрезвычайно важен для запуска в мозге долговременной потенциации.
С возрастом производство всех трех перечисленных гормонов, а также нейротрофинов снижается, ослабляя и нейрогенез. Как мы увидим, даже еще до наступления старости эти снижения могут проявиться в возрастании стрессовых состояний и депрессий. Но, с моей точки зрения, во всем написанном выше есть оптимистическая нота. Если физическая активность приводит к увеличению выработки нейротрофинов и факторов роста IGF-1 (ИФР), VEGF (ФРЭС) и FGF-2 (ФРФ), это значит, что мы располагаем определенным контролем над ситуацией.
Речь идет о росте против упадка; об активности против инертности. Наше тело создано, чтобы двигаться. Проявляя физическую активность, мы включаем и мозг. Способность к обучению и память развились в процессе эволюции; они тесно связаны с двигательными функциями, позволявшими доисторическим предкам находить пищу. Так что, говоря о мозге: если мы не двигаемся, нам не нужно и обучаться чему-либо.
Теперь вы знаете, что физические упражнения повышают нашу способность к обучению на трех уровнях. Первое: они улучшают настрой мозга, повышая его восприимчивость, внимание и целеустремленность. Второе: они готовят и побуждают нервные клетки к активизации взаимных связей, что на клеточном уровне создает основу для восприятия новой информации. И третье: они способствуют развитию новых нервных клеток из стволовых, имеющихся в гиппокампе. Хорошо, скажете вы, а какие же упражнения лучше? Конечно, было бы хорошо располагать идеальным унифицированным набором и объемом упражнений, гарантированно укрепляющих и развивающих мозг, однако ученые еще только подходят к этой задаче. «Пока никто не занимался всерьез подобными исследованиями, – говорит Уильям Гриноу. – Однако, думаю, лет через пять наши знания по этому вопросу существенно расширятся».
И все же даже сейчас можно сделать определенные выводы из имеющихся данных. Об одном они говорят с определенностью: вы вряд ли сможете запоминать трудный материал непосредственно во время интенсивной физической активности, поскольку в это время кровь оттекает от префронтальной коры головного мозга, снижая ее исполнительные функции. Например, когда студенты колледжа занимались на стационарной беговой дорожке в течение 20 минут с нагрузкой, соответствующей 70–80 % их максимальной частоты сердечных сокращений, они одновременно показывали не очень хорошие результаты в задачах комплексного обучения. (Именно поэтому, поступая в юридический вуз, постарайтесь не готовиться к экзаменам, занимаясь во всю силу на эллиптических тренажерах, имитирующих ходьбу на лыжах.) Однако кровотоки в вашем организме перераспределяются почти сразу после завершения упражнений, и это – лучшее время, чтобы сосредоточиться над новым проектом или комплексным анализом проблем.
В 2007 году был проведен известный эксперимент, однозначно показавший: всего одна 35-минутная тренировка на дорожке для ходьбы с нагрузкой в пределах 60–70 % максимальной ЧСС существенно повышает гибкость мышления. Объектами исследования стали 40 взрослых людей 50–64 лет. Их просили придумать как можно больше способов использования газеты: прежде всего она предназначена для чтения, но в нее можно заворачивать рыбу, ею легко накрывать клетку с птицей, в нее можно упаковывать вещи и так далее. Половина испытуемых смотрели фильм, другие занимались на тренажерах. Их тестировали непосредственно перед экспериментом, сразу же после него и еще раз – спустя 20 минут. У тех, кто смотрел фильм, никаких изменений не обнаружилось. А вот те, кто занимался на тренажерах, продемонстрировали улучшение скорости обработки информации и гибкости мышления всего после одной тренировки. Гибкость мышления – важная исполнительная функция мозга, которая отражает способность к переключению и обеспечению устойчивого потока креативных мыслей в противовес тривиальным. Это качество человека связано с высокой продуктивностью в тех направлениях, которые требуют высокой интеллектуальной отдачи. Так что, если во второй половине дня вам предстоит важное совещание типа «мозгового штурма», недолгая, но интенсивная пробежка во время обеда вам поможет.