chitay-knigi.com » Разная литература » Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 97 98 99 100 101 102 103 104 105 ... 116
Перейти на страницу:
можно более похожих по максимальному набору параметров на данного конкретного человека. С помощью причинного вывода мы отбрасываем нерелевантные характеристики и извлекаем этих индивидов из разнообразных исследований, в то время как большие данные позволяют собрать о них достаточно информации.

Легко понять, почему некоторые люди считают интеллектуальный анализ данных финальным, а не первым шагом. Он обещает решение с использованием имеющихся технологий. Он избавляет и нас, и машины будущего от необходимости рассматривать и формулировать обоснованные предположения о том, как устроен мир. В некоторых областях наши знания находятся в таком зачаточном состоянии, что мы понятия не имеем, как приступить к созданию модели мира. Но большие данные не решат эту проблему. Важнейшая часть ответа должна исходить из модели, нарисованной нами или предложенной и уточненной машинами.

Чтобы не показаться излишне критичным по отношению к работе с большими данными, я хотел бы упомянуть одну новую возможность для их симбиоза с причинным выводом. Она называется транспортабельностью.

Благодаря большим данным мы можем получить доступ к огромному количеству не только людей в любом конкретном эксперименте, но и исследований, проведенных в разных местах и в различных условиях. Часто нам нужно объединить результаты этих исследований и перенести их на новые группы населения, которые могут отличаться даже в том, что будет для нас неожиданным.

Процесс перевода результатов исследования из одних условий в другие играет в науке фундаментальную роль. Фактически научный прогресс остановился бы, если бы у нас не было способности обобщать результаты лабораторных экспериментов и переносить их в реальный мир, например из пробирок на животных и на людей. Но до недавнего времени каждой науке приходилось разрабатывать собственные критерии для отделения валидных обобщений от невалидных, а систематических методов для решения проблемы транспортабельности в целом не существовало.

За последние пять лет мне и моему бывшему студенту (теперь коллеге) Элиасу Барейнбойму удалось найти исчерпывающий критерий, чтобы принять решение о том, переносимы ли результаты. Как обычно, необходимое условие для его использования — представить процесс генерации данных в виде диаграммы причинности, на которой отмечены места потенциальных несоответствий. Переносить результат не обязательно означает принимать его в исходной форме и применять в новой среде. Исследователю, возможно, придется откалибровать его, чтобы учесть различия между двумя средами.

Предположим, мы хотим узнать эффект воздействия рекламы в Интернете (X) на вероятность того, что потребитель купит товар (Y), скажем доску для серфинга. У нас есть данные, полученные в результате исследований в пяти разных местах — в Лос-Анджелесе, Бостоне, Сан-Франциско, Торонто и Гонолулу. Теперь мы хотим оценить, насколько эффективной эта реклама будет в Арканзасе. К сожалению, все группы и все исследования несколько отличаются. Например, группа, изученная в Лос-Анджелесе, моложе, чем наша целевая аудитория, а в Сан-Франциско она отличается по количеству переходов по ссылке. На рис. 65 показаны уникальные характеристики каждой группы и каждого исследования. Можем ли мы объединить данные, полученные в далеких друг от друга местах, чтобы оценить эффективность рекламы в Арканзасе? Можем ли мы сделать это, не собрав данные в Арканзасе? Или измерив лишь ограниченное число переменных? Или проведя пилотное наблюдательное исследование?

Рис. 65. Проблема транспортабельности

На рис. 66 эти различия переведены в форму графика. Переменная Z представляет возраст, который играет роль осложнителя; молодые люди с большей вероятностью увидят рекламу и с большей вероятностью купят продукт, даже если не видели рекламу. Переменная W отражает переход по ссылке с целью получить дополнительную информацию. Это медиатор — шаг, который необходим, чтобы просмотр рекламы превратился в покупку продукта. Буква S в каждом случае обозначает переменную, «производящую различие», т. е. гипотетическую переменную, которая указывает на характеристики, отличающие две группы. Например, в группе б «Лос-Анджелес» индикатор S указывает на Z, возраст. В каждом из иных городов индикатор указывает на характерную черту группы, приведенную на рис. 65.

Для рекламного агентства хорошая новость здесь в том, что компьютер теперь способен справиться с этой сложной проблемой слияния данных и, руководствуясь do-исчислением, сообщить нам, какие исследования используются для ответа на наш запрос и какими способом это делается, а также какую информацию нам нужно собрать в Арканзасе, чтобы подтвердить вывод. В некоторых случаях эффект переносится напрямую, без дополнительной работы — возможно, нам не придется ехать в Арканзас. Например, эффект от рекламы в Арканзасе должен быть таким же, как в Бостоне, потому что согласно диаграмме, группа с отличается от группы а только переменной V, которая не влияет ни на воздействие X, ни на результат Y.

Рис. 66. Различия между исследованными группами, выраженные в графической форме

Нам необходимо по-новому оценить данные в некоторых других исследованиях, положим, принять в расчет иную возрастную структуру населения в лос-анджелесском исследовании б. Интересно, что эксперимента в Торонто e достаточно для оценки нашего запроса в Арканзасе, несмотря на несоответствие в параметре W, если мы можем измерить только X, W и Y в Арканзасе.

Примечательно, что мы нашли примеры, в которых транспортировка невозможна из любого отдельно взятого исследования; тем не менее целевое количество можно оценить по их комбинации. Кроме того, даже исследования, откуда нельзя ничего перенести, не совсем бесполезны. Так, исследование Гонолулу е на рис. 66 невозможно транспортировать из-за стрелки S → Y. Однако стрелка XW не загрязнена S, поэтому данные, полученные в этой группе, можно использовать для оценки P (W | X). Объединив это с оценками P (W | X) из других исследований, мы повысим точность этого подвыражения. Тщательно комбинируя такие подвыражения, мы можем синтезировать точную общую оценку целевого количества.

Хотя в простых случаях эти результаты интуитивно разумны, когда диаграммы становятся более сложными, нам нужна помощь формального метода. Do-исчисление обеспечивает общий критерий для определения транспортабельности в таких случаях. Правило довольно простое: если выполняется допустимая последовательность do-операций (с использованием правила из главы 7), которые преобразуют целевую величину в другое выражение, в котором любой фактор, включающий S, не содержит do-операторов, тогда оценка транспортабельна. Логика проста: любой такой фактор оценивается по имеющимся данным, не затронутым фактором несоответствия S.

Элиас Баренбойм сумел сделать с проблемой транспортабельности то же, что Илья Шпицер совершил с проблемой интервенции. Он разработал алгоритм, который автоматически определяет, является ли желаемый эффект переносимым, используя только графические критерии. Другими словами, он сообщает, реально ли отделить S от do-операторов или нет.

Результаты Барейнбойма впечатляют, потому что в их свете явление, которое раньше считалось угрозой для валидности, превратилось в новую возможность. Она позволяет нам применять многочисленные

1 ... 97 98 99 100 101 102 103 104 105 ... 116
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности