chitay-knigi.com » Историческая проза » История астрономии. Великие открытия с древности до средневековья - Джон Дрейер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 103
Перейти на страницу:

Ширина лунки между орбитой Марса и эксцентрической окружностью наконец дала долгожданный ключ к тайне движения планеты. Она составляла 0,006 60, при полудиаметре окружности 1,523 50, или 0,004 32, если полудиаметр равен 1. Это почти равно 0,004 29, или половине ширины лунки в теории овала. По чистой случайности, как признает Кеплер, он заметил, что 1,004 29 равно секансу наибольшего оптического уравнения Марса, то есть секансу угла (5°18′), тангенс которого равен эксцентриситету. «Я как будто пробудился ото сна, и меня озарило новым светом». На средних расстояниях оптическое уравнение является максимальным, и там сокращение расстояний оказывается наибольшим, превышая единицу на 1,004 29. Этот результат Кеплер распространил на все точки орбиты, заменив всюду радиус-вектор эксцентрической окружности на одинаковую величину, умноженную на косинус оптического уравнения, или distantia diametralis, как он это называет. Сравнение ряда расстояний, вычисленных по этому правилу, с результатами, получившимися из наблюдений Браге, показало, что это предположение вполне оправданно. Так было сделано великое открытие, что радиус-вектор Марса всегда представлен уравнением

г = а + ае cos Е,

где а — среднее расстояние, а Е — эксцентрическая аномалия, отсчитанная по старому обыкновению от афелия, тогда как ае — расстояние между Солнцем и центром орбиты. Хотя фактически цель была достигнута, в последнюю минуту Кеплер все же нашел новые неприятности на свою голову. Уменьшение радиус-вектора по мере удаления планеты от афелия позволило предположить либрацию планеты по диаметру эпицикла, движущегося по окружности, концентрической с Солнцем. Но хотя это могло представить вышеприведенное уравнение, то есть длину радиус-вектора, попытка вычислить таким способом соответствующую истинную аномалию привела к ошибкам в 4′ или 5′. Это заставило Кеплера вернуться к эллипсу, который он уже использовал в качестве замены овалу, и наконец он доказал, что эллипс с Солнцем в одном из фокусов дает длину радиус-вектора, согласующуюся с вышеописанным уравнением, тогда как его направление получается из

r cos υ = ае + а cos Е.

Большая проблема в конце концов была решена, проблема, которая сбила с толку гениального Евдокса и оказалась камнем преткновения для александрийских астрономов, так что Плиний даже назвал Марс «звездой, не поддающейся наблюдению». Многочисленные наблюдения Тихо Браге, сделанные с недостижимой дотоле точностью, в умелых руках Кеплера выявили неожиданный факт, что Марс описывает эллипс, в одном из фокусов которого находится Солнце, а радиус-вектор планеты охватывает равные площади в равные промежутки времени. Гений и поразительное терпение Кеплера доказали не только то, что эта новая теория удовлетворяет наблюдениям, но и то, что никакую другую гипотезу невозможно согласовать с наблюдениями, так как все предлагаемые альтернативы сохраняют вопиющие ошибки, которые никак невозможно было отнести на счет ошибок наблюдения. Таким образом, Кеплер, в отличие от всех своих предшественников, не просто выдвинул новую гипотезу, которая могла, как и другая, позволить математику-расчетчику составить таблицы движения планет; он нашел фактическую орбиту, по которой планета летит через пространство. В пятой и последней части своей книги о Марсе он наконец показал, как идеально новая теория отображает наблюдаемые широты. Долготы уже доставили немало хлопот предыдущим теоретикам, но широты были просто безнадежным случаем и доводили астрономов до самых необоснованных предположений, например об орбитальных колебаниях. Теперь, когда был установлен истинный характер орбиты и доказано, что ее плоскость пересекается с плоскостью орбиты Земли на линии, проходящей через Солнце, все стало ясно, и многие до той поры необъяснимые явления сразу оказались объяснены. Среди них был и тот факт, что широта не всегда максимальна точно в момент противостояния, и Кеплер цитирует и рукописи Браге, и свои беседы с ним, чтобы показать, какое беспокойство это вызывало у великого астронома-практика. Теперь проблема превратилась в вопрос: меняется ли быстрее всего синус гелиоцентрической широты или расстояние между Марсом и Землей, и так астрономы-теоретики освободились еще от одного источника затруднений.

Открытие эллиптической орбиты Марса стало абсолютно новой отправной точкой, так как наука отказалась от принципа равномерного кругового движения, принципа, который издавна считался самоочевидным и неприкосновенным, хотя еще Птолемей молчаливо опустил его, введя эквант. Поэтому пытливый ум Кеплера не мог не попытаться объяснить, почему планета описывает эллиптическую, а не круговую орбиту.

В «Тайне мироздания» Кеплер предположил существование anima motrix у Солнца и теперь начал дальше развивать эту идею. Эта сила исходит от Солнца, но, в отличие от света, распространяется не во все стороны, а только в плоскости, близко к которой расположены плоскости всех планетных орбит, так что она просто уменьшается по мере увеличения расстояния. Скорость движения планеты по орбите, следовательно, изменяется обратно пропорционально расстоянию, и эта идея, как мы уже видели, привела Кеплера к открытию его второго закона. Но правило нельзя было просто распространить с одной орбиты на другую, ведь тогда периоды обращения были бы пропорциональны квадратам расстояний. Солнечная сила производит обращение планет, потому что Солнце вращается вокруг своей оси и таким образом вместе с собой вращает прямые линии, по которым распространяется сила, с запада на восток. В результате образуется круговой поток или вихрь, который уносит планеты за собой, но их периоды обращения отличаются по причине разного сопротивления, оказываемого каждой планетой, которое зависит от ее массы. Естественно было предположить, что солнечный экватор совпадает с эклиптикой, а период вращения Солнца был определен весьма любопытным образом. Периоды обращения планет, находящихся ближе к Солнцу, короче, чем у планет, находящихся дальше, так что период вращения Солнца должен быть меньше 88 дней – периода обращения Меркурия. Кеплер предполагает, что полудиаметры Солнца и орбиты Меркурия находятся в том же соотношении друг к другу, как полудиаметры Земли и орбиты Луны, следовательно, периоды должны находиться в том же отношении, и так мы получаем период вращения Солнце равный примерно трем дням. Несколько лет спустя, когда вскоре после изобретения телескопа были открыты солнечные пятна, Кеплер вынужден был признать[345], что эта оценка и предположение о положении солнечного экватора оказались одинаково ошибочными.

Вихри, вызываемые Солнцем, увлекают планеты по круговым орбитам, концентрическим с Солнцем, и поэтому необходимо найти какую-то силу, способную превратить это круговое движение в эллиптическое. Еще до публикации книги Гильберта «О магните» Кеплер много интересовался магнетизмом, как нам известно из писем, написанных в 1599 году баварскому канцлеру Герварту фон Хоненбургу; и он неоднократно пытался найти положение магнитных полюсов Земли с помощью тех немногих определений магнитного склонения, которые были ему доступны. Сначала он считал, что северный полюс на 23°28′ отклоняется от магнитного полюса и что магнитный полюс указывает на место, где находился полюс вращения в момент сотворения, так как, когда два полюса постепенно разошлись, экватор Земли приобрел наклон относительно эклиптики. После этого на основании наблюдений, сделанных голландской экспедицией на Новую Землю, он пришел к выводу, что два полюса отстоят лишь на 6½° друг от друга, что, как ему казалось, хорошо вписывается в теорию Доменико Марии Новары, что положение земной оси изменилось на 1°10′ со времен Птолемея и за 5600 лет, прошедших с момента сотворения мира, разница составит более 5°. Хотя Кеплер после публикации книги Гильберта и после того, как он получил доступ к большему числу измерений склонения, и признал, что невозможно определить положение магнитного полюса подобными способами, он продолжал глубоко интересоваться магнетизмом, считая, что это явление способно объяснить эллиптическое движение планет.

1 ... 92 93 94 95 96 97 98 99 100 ... 103
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности