Шрифт:
Интервал:
Закладка:
r — r cos θ = h cos θ
r (1 — cos θ) = h cos θ
Тогда
МАШИНА УМНОЖЕНИЯ
Утверждение. Для того чтобы умножить a × b, необходимо построить на параболе y = x2 прямую из точки x = −а до точки x = b, как показано на рисунке. Прямая линия, соединяющая эти две точки, пересекает ось y в точке a × b.
Доказательство. Примем за истинное следующее утверждение: уравнение прямой, проходящей через точку с координатами (p, q), имеет вид y — q = (x — p)m, где m — градиент.
Прямая на графике проходит через точки с координатами (−a, a2) и (b, b2).
Градиент этой прямой, который представляет собой отношение расстояния по вертикали к расстоянию по горизонтали, рассчитывается по формуле, которую можно преобразовать к виду, затем это выражение можно сократить до (b — a).
Следовательно, уравнение прямой выглядит так:
y — a2 = (x + a) (b — a)
Его можно преобразовать следующим образом:
y — a2 = xb — xa + ab — a2
Члены — a2 можно сократить, после чего останется такое уравнение:
y = xb — xa + ab
Если прямая пересекает вертикальную ось, тогда x = 0, а значит,
y = ab
Другими словами, прямая пересекает ось в точке ab, что равно a × b.
Если сумма S наращивается со скоростью r, то после t периодов начисления сложных процентов значение этой суммы равно
S (1 + r)t
Сумма удвоится, когда (1 + r)t = 2. Чтобы решить это уравнение, необходимо взять натуральный логарифм обеих его частей. Натуральный логарифм — это логарифм с основанием е, который обозначается как ln. Таким образом
ln (1 + r)t = ln 2
Что сводится к
t ln (1 + r) = ln 2
Следовательно,
Когда r имеет небольшое значение, то ln (1 + r) ≈ r, стало быть, это уравнение можно записать так:
Что эквивалентно
Если r — скорость, выраженная в дробном виде, то обозначим через R скорость в процентном выражении. В таком случае необходимо умножить числитель и знаменатель в дроби t на 100
Следовательно, количество периодов начисления сложных процентов t, необходимых для удвоения суммы, составляет 69 разделить на темпы роста в процентах R.
Поскольку число 72 легче делится на другие числа, чем 69, в правиле 72 чаще всего используется именно это число, хотя значение 69 было бы точнее[187].
Площадь самого большого заштрихованного квадрата составляет. Второй по величине заштрихованный квадрат имеет площадь, равную четверти самого большого квадрата, то есть. Площадь третьего по величине квадрата составляет четверть этой площади и т. д. Следовательно, общая площадь заштрихованных квадратов равна
Однако каждому заштрихованному квадрату соответствует ровно по два незаштрихованных квадрата одинакового размера. Таким образом, площадь заштрихованных квадратов должна также составлять общей площади. Стало быть,