Шрифт:
Интервал:
Закладка:
403
Chernet B., Levin M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. Journal of Clinical and Experimental Oncology, Suppl. 1: S1-002 (2013).
404
Chernet & Levin, Endogenous Voltage Potentials.
405
Gruber B. Battling cancer with light. Reuters, 26 April 2016.
406
Chernet B., Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Disease Models & Mechanisms, vol. 6, no. 3 (2013), pp. 595–607.
407
Silver & Nelson, The Bioelectric Code.
408
Tuszynski J. et al. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Current Pharmaceutical Design, vol. 23, no. 32 (2017), pp. 4827–41.
409
Schlegel J. et al. Plasma in cancer treatment. Clinical Plasma Medicine, vol. 1, no. 2 (2013), pp. 2–7.
410
Brown J. Team Builds the First Living Robots. The university of Vermont, 13 January 2020.
411
Lee Y. et al. Hydrogel soft robotics. Materials Today Physics 15 (2020).
412
Thubagere A. et al. A Cargo-Sorting DNA Robot. Science, vol. 357, 6356 (2017), eaan6558.
413
Solon O. Electroceuticals: swapping drugs for devices. Wired, 28 May 2013.
414
Geddes L. Healing spark: Hack body electricity to replace drugs. New Scientist, 19 February 2014.
415
Behar M. Can the nervous system be hacked? The New York Times, 23 May 2014.
416
Mullard A. Electroceuticals jolt into the clinic, sparking autoimmune opportunities. Nature Reviews Drug Discovery 21 (2022), pp. 330–1.
417
Hoffman H., Schnitzlein H. N. The Numbers of Nerve Fibers in the Vagus Nerve of Man. The Anatomical Record, vol. 139, no. 3 (1961), pp. 429–35.
418
Davies D. Are Implanted Medical Devices Creating a “Danger Within us”? NPR, 17 January 2018.
419
Golabchi A. et al. Zwitterionic Polymer/Polydopamine Coating Reduce Acute Inflammatory Tissue Responses to Neural Implants. Biomaterials 225 (2019), 119519.
420
Leber M. et al. Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. In: Zheng X. (ed.) Neural Interface: Frontiers and Applications. Singapore: Springer, 2019, pp. 1–40.
421
Yin P. et al. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers, vol. 13, no. 16 (2021), 2834.
422
Aregueta-Robles U. A. et al. Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 27 May 2014.
423
The Nobel Prize in Chemistry 2000, NobelPrize.org.
424
Cuthbertson A. Material Found by Scientists “Could Merge AI with Human Brain”. The Independent, 17 August 2020.
425
Теоретически существует также возможность ингибировать потенциал действия, что означает стимулировать тормозные нейроны – такие нейроны, которые не дают возбуждаться другим нейронам. Но по сути это тот же самый механизм.
426
В попытках понять, как тело интерпретирует потенциалы действия, некоторые компании встраивают еще больше электродов, чтобы прослушивать ответные сигналы. Но такой подход влечет за собой повышенный риск, связанный с хирургическим вмешательством, и на людях таких экспериментов совершенно определенно не ставят.
427
Casella A. et al. Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering. Bioelectricity, vol. 3, no. 1 (2021), pp. 27–41.
428
Demers C. et al. Natural Coral Exoskeleton as a Bone Graft Substitute: A Review. Bio-Medical Materials and Engineering, vol. 12, no. 1 (2002), pp. 15–35.
429
Базирующиеся в Израиле компании OkCoral и CoreBone выращивают кораллы, придерживаясь специальной диеты, что делает их наиболее подходящими для трансплантации.
430
Wan M. et al. Biomaterials from the Sea: Future Building Blocks for Biomedical Applications. Bioactive Materials, vol. 6, no. 12 (2021), pp. 4255–85.
431
DeCoursey T. Voltage-Gated Proton Channels and Other Proton Transfer Pathways. Physiological Reviews, vol. 83, no. 2 (2003), pp. 475–579.
432
Lane N. Why Are Cells Powered by Proton Gradients? Nature Education, vol. 3, no. 9 (2010), p. 18.
433
Kautz R. et al. Cephalopod-Derived Biopolymers for Ionic and Protonic Transistors. Advanced Materials, vol. 30, no. 19 (2018), p. 1704917.
434
Ordinario D. et al. Bulk protonic conductivity in a cephalopod structural protein. Nature Chemistry, vol. 6, no. 7 (2014), pp. 596–602.
435
Strakosas X. et al. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. Advanced Science, vol. 4, no. 7 (2017), p. 1600527.
436
Kim Y. J. et al. Self-Deployable Current Sources Fabricated from Edible Materials. Journal of Materials Chemistry B 31 (2013), p. 3781.
437
Ordinario D. et al. Protochromic Devices from a Cephalopod Structural Protein. Advanced Optical Materials, vol. 5, no. 20 (2017), p. 1600751.
438
Sheehan P. Bioelectronics for Tissue Regeneration. Defense Advanced Projects Research Agency, 2022.
439
Kriegman S. et al. Kinematic Self-Replication in Reconfigurable Organisms. PNAS, vol. 118, no. 49 (2021), e2112672118.
440
Coghlan S., Leins K. Will self-replicating “xenobots” cure diseases, yield new bioweapons, or simply turn the whole