Шрифт:
Интервал:
Закладка:
Возьмем в качестве примера число 44.
Вам оно нравится? Не нравится? Вы к нему равнодушны?
Дэн Кинг и Крис Янишевски, с которыми мы уже встречались во время обсуждения шампуня Zinc 24, провели эксперимент, в ходе которого респонденты должны были высказать свое отношение к каждому числу от 1 до 100: нравится им оно, не нравится, или они не испытывают к нему никаких эмоций[33] Затем был составлен рейтинг чисел этой группы в порядке снижения их популярности.
Как показали результаты эксперимента, такую постановку вопроса нельзя считать неуместной. Наши симпатии по отношению к числам подчиняются четкой закономерности, что прекрасно видно на теплокарте, где числа от 1 до 100 представлены квадратами. (В верхнем ряду квадратов сетки находятся числа от 1 до 10, во втором ряду — от 11 до 20 и т. д.) Черными квадратами обозначены числа, получившие наибольшее количество голосов (первые двадцать позиций в рейтинге); белыми — «самые нелюбимые» числа (последние двадцать позиций в рейтинге); числа с промежуточными результатами представлены квадратами разных оттенков серого.
На этой теплокарте прослеживаются четкие тенденции. Черные квадраты сосредоточены главным образом в верхней части сетки, а это говорит о том, что в среднем люди отдают предпочтение небольшим числам. Диагональ с наклоном влево показывает, что двузначные числа с двумя одинаковыми цифрами тоже вызывают у людей симпатии: мы любим закономерности. Однако самое удивительное то, что четыре белых столбца свидетельствуют о непопулярности чисел, заканчивающихся на 1, 3, 7 и 9. Как уже упоминалось выше, Кинг и Янишевски считают, что числа, представляющие собой результат простых арифметических операций (например, числа, которые встречаются в таблице умножения), более узнаваемы и легче обрабатываются мозгом, поэтому они больше нравятся людям. Все без исключения четные числа и числа, заканчивающиеся на 5, делятся без остатка, тогда как многие числа, заканчивающиеся на 1, 3, 7 и 9, ни на что не делятся.
В ходе аналогичного исследования Маришка Миликовски из Амстердамского университета предложила участникам оценить числа от 1 до 100 по трем критериям: хорошие — плохие, тяжелые — легкие, возбудимые — спокойные[34]. Когда опрашиваемых попросили спроецировать на числа те или иные свойства, не имеющие отношения к математике, ответы и на этот раз оказались на удивление обоснованными. Я представил результаты данного эксперимента в виде теплокарт.
Здесь тоже отчетливо видны определенные закономерности. Белые столбцы сетки «Хорошие — плохие числа» показывают, что респонденты считают самыми плохими числа, заканчивающиеся на 3, 7 и 9, — что неудивительно, поскольку мы уже убедились, что такие числа нравятся людям меньше всего. В случае оценки по шкале «Тяжелые — легкие числа» основная масса черных квадратов сосредоточена в нижней части сетки; это говорит о том, что чем больше число, тем более тяжелым оно кажется. В сетке «Возбудимые — спокойные числа» закономерность не сразу бросается в глаза, но если присмотреться внимательно, то становится очевидным, что столбцы, соответствующие нечетным числам, гораздо темнее столбцов с четными числами. Следовательно, нечетные числа считаются возбудимыми, тогда как четные — спокойными. Мы легко проецируем на числа нематематические свойства, отображающие количественные характеристики чисел, особенно их величину и кратность.
Предпоследняя сетка — это теплокарта рейтинга чисел, составленного по результатам интернет-опроса, на которой 20 самых популярных чисел представлены черными квадратами и т. д. Последняя сетка отображает результаты еще одного интернет-опроса, в ходе которого я предложил участникам в произвольном порядке выбрать число от 1 до 100. Здесь двадцать самых популярных чисел тоже представлены черными квадратами. Интересно, что эти две теплокарты очень похожи друг на друга: когда нас просят назвать понравившееся число, а также первое число, пришедшее нам в голову, мы склонны называть одни и те же числа. Как ни странно, в большинстве случаев наши любимые числа не совпадают с числами, которые нам нравятся или которые мы считаем самыми хорошими. Симпатия и любовь — разные вещи.
Эти теплокарты сразу же напомнили мне о Джерри Ньюпорте — чемпионе мира по устному счету и бывшем таксисте, с которым я встречался в Аризоне. Джерри рассказывал, что когда он видит четырех- или пятизначное число, то сразу же «отсеивает» простые числа. Другими словами, сначала Джерри определяет, делится ли это число на 2, затем на 3, а потом на 5, 7, 11 и т. д., чтобы найти его простые делители.
Например:
2761 = 11 × 251
2762 = 2 × 1381
2763 = 3 × 3 × 307
Благодаря этим теплокартам я понял, что мы действительно отсеиваем простые числа. Ниже представлены те же теплокарты, но в них простые числа отмечены звездочками. Они и впрямь похожи на решето! В теплокартах «Самые любимые числа» и «Хорошие — плохие числа» простые числа почти всегда попадают в белые квадраты, как будто проваливаются через отверстия в металлической сетке. Напротив, в теплокартах «Возбудимые — спокойные числа», «Самые любимые числа» и «Произвольно выбранные числа» простые числа обозначены черными и серыми квадратами. Эти сетки напоминают решето, предназначенное для вылавливания простых чисел. Следовательно, простые числа — это очень важный элемент внутренних представлений о числах, причем не только для таких гениев, как Джерри Ньюпорт, но и для всех нас. Наш мозг всегда настроен на восприятие арифметических истин.