chitay-knigi.com » Домоводство » Достучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 78 79 80 81 82 83 84 85 86 ... 123
Перейти на страницу:

Значительная часть моих текущих исследований заключается в размышлениях о новых моделях, а также о новых или более проработанных стратегиях поиска, направленных на то, чтобы никакие новые явления не остались незамеченными. Я думаю не только о созданных на основе моих идей моделях, но и о множестве других возможностей. Специалисты по физике элементарных частиц прекрасно знают, какого типа элементы и правила могут работать в моделях—это частицы, силы и допустимые взаимодействия. Но мы не знаем в точности, без каких именно ингредиентов картина реальности получится неполной. Используя известные теоретические составляющие, мы пытаемся распознать те потенциально простые базовые идеи, на которых вырастает сложная теория.

Не менее важно и то, что модели помогают нам выявить цели для дальнейших экспериментальных исследований и предсказать, как поведут себя частицы на расстояниях, меньших, чем те, что ученым до сих пор удавалось изучить эмпирически. Результаты измерений помогают нам сделать выбор. Мы пока не знаем, какой будет новая фундаментальная теория, но уже можем судить о ее вероятных отклонениях от Стандартной модели. Рассматривая конкурирующие модели и их следствия, мы можем предсказать, что продемонстрирует нам БАК, если та или иная модель окажется верной.

Исследование моделей и их следствий помогает понять, что именно следует искать ученым. Любая модель с новыми физическими законами, справедливыми в измеримом масштабе энергий, должна предсказывать существование новых частиц и новых отношений между ними. Наблюдение за тем, какие частицы рождаются при столкновениях и какими они обладают свойствами, должно помочь в решении вопроса о том, какие вообще существуют частицы, какие у них массы и как они взаимодействуют. Обнаружение новых частиц или измерение характеристик различных взаимодействий должно подтвердить или отвергнуть предложенные ранее модели и проложить путь к созданию новых, более удачных.

Если данных будет достаточно, эксперименты определят, какая из фундаментальных моделей верна — по крайней мере на том уровне точности, расстояний и энергии, который мы в состоянии исследовать. Мы надеемся, что на самом крохотном диапазоне расстояний, который мы сможем исследовать при энергиях БАКа, правила для фундаментальной теории окажутся достаточно простыми, чтобы позволить нам вывести соответствующие физические законы.

Среди физиков идут оживленные дискуссии о том, какие именно модели следует изучать и как учитывать их в экспериментальных исследованиях. Я, к примеру, нередко сажусь за стол с коллегами–экспериментаторами, чтобы вместе разобраться, как лучше всего использовать модели для определения направления дальнейших исследований. Не являются ли слишком специфическими контрольные точки с теми или иными параметрами в конкретных моделях? Нет ли лучшего способа рассмотреть все возможности?

Эксперименты на БАКе настолько сложны, что поиск без конкретной цели ни к чему не приведет: интересные данные будут задавлены массой фоновых событий, связанных со Стандартной моделью. Экспериментальные установки разрабатывались и оптимизировались в расчете на существующие модели, но более универсальный поиск в них тоже ведется. Экспериментаторы обязательно должны представлять себе огромное количество моделей, объясняющих те или иные новые данные, которые могут появиться, — это необходимо, чтобы избежать предвзятости.

И теоретики, и экспериментаторы стараются сделать так, чтобы мы не пропустили ничего интересного. Мы не можем знать, которое из множества предположений верно (если такое есть), до тех пор, пока оно не найдет экспериментального подтверждения. Предложенные модели могут верно описывать реальность, но, даже если они окажутся ошибочными, они все же предлагают нам стратегии поиска и сообщают характеристики еще не открытых элементов. Мы надеемся, что БАК даст нам ответы — какими бы они ни были, — и мы должны быть готовы к этому.

ГЛАВА 16. БОЗОН ХИГГСА

Утром 30 марта 2010 г. я проснулась и увидела у себя в почте целый кучу электронных писем с рассказами об успешном пуске и первых столкновениях с энергией 7 ТэВ, состоявшихся накануне ночью. Этот триумф ознаменовал начало реальной программы физических исследований на БАКе. Ускорение частиц и первые столкновения, имевшие место в конце 2009 г., были скорее техническими, чем научными достижениями. Они, конечно, были важны и для экспериментаторов, которые смогли наконец откалибровать свои детекторы на настоящих протонных столкновениях в коллайдере, а не на случайных космических лучах, пролетевших сквозь установку. Следующие полтора года детекторы в Европейском центре ядерных исследований будут регистрировать реальные данные, при помощи которых физики смогут проверить свои модели или наложить на них дополнительные ограничения.

Пуск прошел почти точно по плану. Коллеги–экспериментаторы считают, что это хорошо; еще накануне они высказывали мне свои опасения и говорили, что присутствие журналистов может помешать. Журналисты (и остальные присутствующие) стали свидетелями нескольких ложных стартов — отчасти благодаря установленным на БАКе защитным механизмам, готовым выключить систему сразу же, как только хотя бы что‑нибудь пойдет не так. Однако несколько часов спустя все было в порядке: пучки циркулировали по кольцу коллайдера и сталкивались, как положено; газеты и новостные вебсайты получили массу красивых картинок для публикации.

Кстати, 7 ТэВ, достигнутые при столкновениях в марте 2010 г., — это лишь половинный для БАКа энергетический уровень. Реальную целевую энергию — 14 ТэВ — не планируется задействовать еще по крайней мере несколько лет. Светимость коллайдера — число протонных столкновений в секунду — тоже была намного ниже, чем возможно. Тем не менее в тот день мы смогли поверить, что наше понимание внутренней природы вещества скоро существенно продвинется вперед. А если все пойдет хорошо, то через пару лет БАК будет остановлен, приведен в порядок и вновь запущен уже в полную силу, чтобы дать нам наконец долгожданные ответы.

Одна из важнейших целей коллайдерных исследований — понять, чему фундаментальные частицы обязаны своей массой. Пог чему все вокруг не носится со скоростью света — а именно это делало бы любое вещество, если бы оно обладало нулевой массой? Ответ на этот вопрос зависит от группы частиц, известных вместе как сектор Хиггса и включающих, в частности, бозон Хиггса. В этой главе объясняется, почему этот бозон так важен для понимания феномена возникновения масс. Следующий эксперимент на БАКе, проведенный при более высоких светимости и энергии столкновения, должен в конце концов рассказать нам все о частицах и взаимодействиях.

МЕХАНИЗМ ХИГГСА

Ни один физик не сомневается в том, что на изученных нами до сих пор энергиях Стандартная модель работает. Результаты экспериментов согласуются с ее прогнозами с высокой точностью — лучше 1%.

Однако Стандартная модель полагается на один ингредиент, которого никто пока еще не наблюдал. Механизм Хиггса, названный по имени британского физика Питера Хиггса, — единственный известный нам способ, способный последовательно придавать массы элементарным частицам. Исходя из основных положений «наивной» версии Стандартной модели, ни калибровочные бозоны, передающие взаимодействия, ни сами элементарные частицы, такие как кварки и лептоны, не должны обладать какой‑то ненулевой массой. Тем не менее измерения физических явлений ясно показывают, что те и другие ею обладают. Массы элементарных частиц необходимы для понимания многих явлений атомной физики и физики элементарных частиц, таких как радиус орбиты электрона в атоме или те крохотные расстояния, на которых работает слабое взаимодействие, не говоря уже о формировании структуры Вселенной. Кроме того, массы определяют, сколько энергии нужно для рождения элементарной частицы в соответствии с уравнением Е = mc2. И все же в Стандартной модели без механизма Хиггса массы частиц навсегда остались бы загадкой.

1 ... 78 79 80 81 82 83 84 85 86 ... 123
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности