chitay-knigi.com » Домоводство » Величайшие математические задачи - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 73 74 75 76 77 78 79 80 81 ... 100
Перейти на страницу:

Пока все это происходило, кое-кто из ученых начал понимать, что атомы вовсе не являются неделимыми. Они обладают структурой, и от них можно отбивать маленькие кусочки. В 1897 г. Джозеф Томсон, экспериментируя с катодными лучами, открыл, что атомы можно заставить испускать еще более мелкие частицы, электроны. И не только это: оказалось, что атомы разных элементов испускают одни и те же частицы. При помощи магнитного поля Томсон показал, что электроны несут отрицательный электрический заряд. Но атом электрически нейтрален, так что в нем должна быть какая-то часть, обладающая положительным зарядом. Обдумав это, Томсон предложил модель атома, известную как «пудинг с изюмом»: атом похож на положительно заряженный пудинг с отрицательно заряженными электронами-изюминками внутри. Но в 1909 г. Эрнест Резерфорд, один из бывших студентов Томсона, провел эксперимент и продемонстрировал, что большая часть массы атома сосредоточена возле его центра. Пудинги такими не бывают.

Как можно экспериментально прозондировать такую крохотную область пространства? Представьте себе участок земли, на котором могут быть здания и другие сооружения, а может и не быть ничего. Вам не позволяется входить на эту территорию, к тому же вокруг темно, хоть глаз выколи, и ничего не видно. Однако у вас есть винтовка и неограниченный запас патронов. Вы можете стрелять наугад в направлении участка и отслеживать направление, в котором пули из него вылетают. Если участок напоминает пудинг с изюмом, то большая часть пуль пролетит насквозь по прямой. Если вам придется время от времени уворачиваться от пуль, срикошетивших прямо на вас, то можно будет сделать вывод, что впереди находится что-то довольно твердое. Наблюдая за тем, как часто пули вылетают с участка под тем или иным углом, вы сможете оценить размеры твердого объекта.

Пулями Резерфорда стали альфа-частицы — ядра атомов гелия, а участком земли для него служила тончайшая золотая фольга. Работа Томсона показала, что электроны-изюминки обладают очень малой массой, так что почти вся масса атома должна была приходиться на сам пудинг. Если бы в пудинге не было уплотнений, то бо́льшая часть альфа-частиц должна была бы пролетать насквозь. Лишь некоторые частицы могли отклоняться от своего пути, и то ненамного. Вместо этого оказалось, что небольшая, но заметная часть альфа-частиц отклонялась на достаточно большие углы, что явно не соответствовало картине пудинга. Резерфорд предложил другую метафору, которой мы часто пользуемся и сегодня, несмотря на существование более современных моделей. Речь идет о планетарной модели атома. Атом подобен Солнечной системе, предположил Резерфорд: в нем есть громадное центральное ядро, «солнце» системы, а вокруг ядра, подобно планетам, обращаются электроны. Поэтому атом, как и Солнечная система, по большей части представляет собой пустое пространство.

Резерфорд пошел дальше и нашел доказательства того, что ядро состоит из двух различных типов частиц: протонов, несущих положительный заряд, и нейтронов с нулевым зарядом. Массы тех и других очень близки и примерно в 1800 раз превосходят массу электрона. Таким образом, атомы не только не являются неделимыми, но и состоят из еще более мелких субатомных частиц. Эта теория объясняет целочисленную нумерологию химических элементов: оказывается, подсчитывается не что-нибудь, а количество протонов и нейтронов. Кроме того, она объясняет изотопы: добавление или удаление нескольких нейтронов изменяет массу атома, но сохраняет его суммарный нулевой заряд и число электронов, равное числу протонов. Химические свойства атома определяются в основном его электронами. К примеру, хлор-35 содержит 17 протонов, 17 электронов и 18 нейтронов; хлор-37 − 17 протонов, 17 электронов и 20 нейтронов. Атомная масса 35,45 возникает потому, что природный хлор представляет собой неравную смесь этих двух изотопов.

В начале XX в. появилась и новая теория, применимая к веществу в масштабе субатомных частиц. Она получила название «квантовая механика», и после ее появления физика принципиально изменилась и уже никогда не будет прежней. Квантовая механика предсказала множество новых явлений, которые затем удалось пронаблюдать в лаборатории, и существование новых элементарных частиц. Она также помогла понять прежде не поддававшиеся объяснению явления. Наконец, она изменила наши представления о Вселенной, поскольку классический ее образ, несмотря на великолепную согласованность со всеми предыдущими наблюдениями, оказался неверен. Человеческие органы чувств плохо приспособлены для восприятия реальности на фундаментальном уровне.

В классической физике вещество состоит из частиц, а свет представляет собой волну. В квантовой механике свет тоже частица, фотон; и наоборот, вещество (к примеру, электроны) может иногда вести себя как волна. Прежнее четкое деление на волны и частицы не то чтобы размывается, а вовсе исчезает, сменяясь корпускулярно-волновым дуализмом. Если воспринимать все буквально, планетарная модель атома работала не слишком хорошо, поэтому вскоре появился новый образ. Электроны не обращаются вокруг ядра, как планеты вокруг Солнца, а образуют размытое облако с центром в ядре — облако вероятностей, а не чего-то конкретного. Плотность облака в некоторой точке соответствует вероятности обнаружить в данной точке электрон.

Итак, помимо протонов, нейтронов и электронов физики знали еще одну субатомную частицу — фотон. Вскоре появились и другие. Кажущееся нарушение закона сохранения энергии побудило Вольфганга Паули предложить коллегам исправить положение — постулировать существование нейтрино, невидимой и практически необнаружимой новой частицы, которая объяснила бы утечку энергии. Необнаружимость частицы, однако, оказалась неполной, что позволило в 1956 г. подтвердить ее существование. После этого как будто распахнулись шлюзы. Пионы, мюоны, каоны посыпались как из рога изобилия (последние были открыты в результате наблюдения космических лучей). Появилась новая дисциплина — физика элементарных частиц, и первым ее рабочим инструментом стал метод Резерфорда, позволявший проводить зондирование на тех невероятно малых масштабах, о которых шла речь: чтобы выяснить, как устроен тот или иной объект, нужно бомбардировать его разными «снарядами» и смотреть на результат. Началось строительство и использование все более масштабных ускорителей частиц — по существу, орудий, стреляющих теми самыми пробными снарядами. Стэнфордский линейный ускоритель имел длину 3 км. Чтобы не строить ускорителей длиной в целый континент, их стали изгибать и замыкать в круг, чтобы частицы могли беспрерывно двигаться по ним, одновременно набирая колоссальные скорости. Это серьезно усложнило технологию, поскольку частицы при движении по кругу излучают энергию, но с этим научились справляться.

Первым результатом этих трудов стал растущий каталог элементарных вроде бы частиц. Энрико Ферми так выразил свое разочарование: «Если бы я мог запомнить названия всех этих частиц, я был бы ботаником». Однако время от времени в квантовой теории появлялись новые идеи, и список вновь менялся: предлагались очередные мельчайшие частицы, чтобы объединить уже наблюдавшиеся структуры.

Вначале квантовая механика описывала отдельные волноподобные или частицеподобные явления, но никто не мог вразумительно описать квантово-механический аналог поля. Однако игнорировать этот пробел было невозможно, потому что частицы, описываемые квантовой механикой, могут взаимодействовать и взаимодействуют с полями, которые на тот момент квантовой механикой не описывались. Представьте, что кто-то захотел бы выяснить, как движутся планеты Солнечной системы, притом что ньютоновы законы движения (описывающие, как движутся массы под действием сил) были бы известны, а вот его же закон тяготения (объясняющий, что представляют собой эти силы) — нет.

1 ... 73 74 75 76 77 78 79 80 81 ... 100
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности