Шрифт:
Интервал:
Закладка:
Самым первым и наилучшим является свидетельство Архимеда, который, как мы видели, был младшим современником Аристарха. В письме сиракузскому царю Гелону он сообщал, что Аристарх опубликовал «книгу, состоящую из неких гипотез», и далее: «Его гипотезы таковы, что звезды неподвижны и Солнце остается неподвижным, что Земля вращается вокруг Солнца по окружности, причем Солнце лежит в центре орбиты». Клеант, говорится в одном месте у Плутарха, «думал, что долг греков – обвинить Аристарха Самосского в нечестии за то, что он привел в движение Очаг Вселенной (то есть Землю), причем то был результат его попытки «спасти явления» предположением, будто небо остается в покое, а Земля движется по наклонной окружности и в то же время вращается вокруг своей собственной оси». Клеант был современником Аристарха и умер около 232 года до н. э. В другом отрывке из Плутарха говорится, что Аристарх выдвигал этот взгляд лишь в качестве гипотезы, но что его последователь Селевк поддерживал это как определенную точку зрения (расцвет деятельности Селевка – около 150 года до н. э.). Аэций и Секст Эмпирик также утверждают, что Аристарх выдвинул гелиоцентрическую гипотезу, однако не говорят, что это была у него только гипотеза. Но даже если он сделал именно так, кажется весьма вероятным, что он, как и Галилей две тысячи лет спустя, поддался боязни оскорбить религиозные предрассудки (страх, который, как показывает позиция упомянутого выше Клеанта, был вполне обоснованным).
Гипотеза, сходная с гипотезой Коперника, после того как она была выдвинута Аристархом – в виде ли позитивном или как попытка, – была окончательно принята Селевком, но более ни одним древним астрономом. Это общее отрицание в основном было обязано Гиппарху, который жил с 161 по 126 год до н. э. Он охарактеризован Хизсом как «величайший астроном древности»[171]. Он первый систематически занимался вопросами тригонометрии, открыл прецессию равнодействий, рассчитал долготу лунного месяца с ошибкой менее чем в одну секунду, улучшил сделанные Аристархом расчеты размеров Луны и Солнца и расстояний до них, создал каталог восьмисот пятидесяти неподвижных звезд, указал широту и долготу их местонахождения. Как бы в противовес гелиоцентрической гипотезе Аристарха он принял и улучшил теорию эпициклов, созданную Аполлонием, деятельность которого относится к 220 году до н. э. Именно эта теория в своем развитии известна позже как система Птолемея (по имени астронома Птолемея, жившего в середине II века).
Коперник узнал кое-что, хотя и не многое, из почти забытой гипотезы Аристарха и был обрадован тем, что нашел древний авторитет для поддержки своего нововведения. Кроме того, воздействие этой гипотезы на последующее развитие астрономии было практически нулевым.
Древние астрономы, вычисляя размеры Земли, Луны и Солнца и расстояния до Луны и Солнца, пользовались теоретически правильными методами, но им недоставало точных измерительных приборов. Многие результаты, достигнутые ими, были – если учесть этот недостаток – необычайно точны. Эрастосфен определил диаметр Земли в 7850 миль, то есть с ошибкой примерно лишь в 50 миль. Птолемей рассчитал, что среднее расстояние до Луны в 29,5 раза больше диаметра Земли (правильная цифра – около 30,2). Никто из них не мог приблизиться к точному вычислению размеров Солнца и расстояния до него; все они преуменьшали это расстояние. По их расчетам, оно было равно:
по Аристарху – 180,
по Гиппарху – 1245,
по Посидонию – 6545 земным диаметрам.
Правильная цифра – 11 726 земных диаметров. В дальнейшем эти расчеты все время исправлялись (у Птолемея, однако, ошибка в вычислениях увеличивается; у Посидония[172] это расстояние составляет около половины правильной цифры). В целом же представления этих астрономов о Солнечной системе были не столь уж далекими от истины.
Греческая астрономия была геометрической, а не динамической. Древние представляли движение небесных тел как равномерное и круговое или как состоящее из круговых движений. Они не имели понятия силы. Были сферы, которые двигались как нечто целое и на которых находились различные неподвижные небесные тела. С появлением Ньютона и его закона тяготения была введена новая точка зрения, менее геометрическая. Любопытно отметить возвращение к геометрической точке зрения в общей теории относительности Эйнштейна, из которой изгнана концепция силы в ньютоновском смысле.
Проблема для астронома такова: по данным видимых движений небесных тел ввести по гипотезе третью координату – глубину – таким образом, чтобы сделать описание явления как можно более простым. Главным в гипотезе Коперника является не истина, но простота; в связи с относительностью движения вопрос об истине не ставится вовсе. Греки в своих поисках гипотез, которые «спасли бы явления», на деле, хотя и не совсем преднамеренно, пытались справиться с этой проблемой правильным научным путем. Сравнение их с предшественниками и преемниками до появления Коперника должно убедить всех исследователей в их поистине изумительном гении.
Два великих человека – Архимед и Аполлоний – в III веке до н. э. завершают список первоклассных греческих математиков. Архимед был другом, возможно, и двоюродным братом царя Сиракуз и был убит, когда город захватили римляне в 212 году до н. э. Аполлоний с юношеских лет жил в Александрии. Архимед был не только математиком, но и физиком и изучал гидростатику. Аполлоний в основном известен своими работами по коническим сечениям. Этим я ограничусь при их рассмотрении, так как они жили в эпоху слишком позднюю, чтобы оказать влияние на философию.
После этих двух людей, хотя значительная работа продолжалась в Александрии, великий век закончился. При римском господстве греки потеряли ту уверенность в себе, которая присуща политической свободе, и, потеряв ее, приобрели «парализующее» уважение к своим предшественникам. Римский солдат, убивший Архимеда, был символом гибели оригинального мышления, которую принесло римское господство всему эллинистическому миру.
История Древнего мира, в котором употреблялся греческий язык, может быть разбита на три периода: период свободных городов-государств, конец которому был положен Филиппом и Александром; период македонского господства, последние остатки которого были уничтожены аннексией Египта римлянами после смерти Клеопатры, и, наконец, период Римской империи. Первый из этих трех периодов характеризуется свободой и беспорядком, второй – подчинением и беспорядком, третий – подчинением и порядком.
Второй из этих периодов известен как эллинистический век. Работа, проделанная в этот период в области естественной науки и математики, является наилучшей из всех когда-либо выполненных греками. В философии на этот период падает основание школ эпикурейской и стоической, а также скептицизма как окончательно сформулированной доктрины; поэтому период этот все же важен в отношении философии, хотя и не в такой мере, как период Платона и Аристотеля. После III века до н. э. в греческой философии, по существу, нет ничего нового до неоплатоников (III век до н. э.). Но тем временем римский мир подготовлялся к победе христианства.