chitay-knigi.com » Домоводство » Складки на ткани пространства-времени - Говерт Шиллинг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 67 68 69 70 71 72 73 74 75 ... 88
Перейти на страницу:

Складки на ткани пространства-времени

Однако, если вы очень быстро, едва раздастся чихание, повернете голову, то, вероятно, заметите, что один зритель не успел выпрямиться и, прикрывая лицо, нашаривает носовой платок. Вы обнаружили чихавшего и теперь точно знаете, на каком расстоянии раздался звук, следовательно, можете оценить его реальную силу. Можно также исследовать этого человека с расчетом больше узнать о странном симптоме.

Здесь важны два обстоятельства. Первое: если вы наблюдаете какое-то явление неким определенным образом, всегда полезно пронаблюдать за ним еще и совершенно иным способом. Когда вы слышите что-то, то хотите еще и увидеть это. Если вы поймали гамма-излучение взрыва в космосе, то захотите воспользоваться радиотелескопами или оптическими инструментами. Если ваши инструменты зарегистрируют слабые возмущения пространственно-временного континуума, попытаетесь найти и электромагнитные проявления. Второе: если наблюдаемый феномен является краткосрочным, необходимо действовать быстро.

_________

Много столетий астрономия была наукой неторопливых. Планеты медленно меняли местоположение на небе, созвездия всегда выглядели одинаково, падающая звезда или редкая комета вызывали некоторое оживление, но в общем астрономам незачем было спешить. То, что они имели возможность изучать сегодня, прекрасно можно было исследовать и на следующий день или в следующем году.

Эти времена прошли. За минувшие десятилетия мы раздвинули свой горизонт до миллиардов световых лет, расширили границы восприятия, включив в него все составляющие электромагнитного спектра, невероятно повысили точность наблюдений. В результате мы узнали, что кажущаяся неизменность неба обманчива. Эпизодические явления – норма. Фактически единственное, что никогда не меняется, – это всеобщая изменчивость.

Звезды пульсируют и меняют яркость. Красные гиганты гибнут во взрыве сверхновой. Звезды-карлики выбрасывают мощные вспышки. Если на поверхность белого карлика падает слишком много материи другой звезды двойной системы, гарантирован мощнейший термоядерный взрыв (новая звезда). Астероиды разбивают друг друга вдребезги. Кометы врезаются в планеты. Быстро вращающиеся вокруг своей оси нейтронные звезды излучают импульсы в радио- или рентгеновском диапазоне. Черные дыры испускают в космос джеты из частиц и излучения. Квазары мигают. Нейтронные звезды сталкиваются и сливаются. Наше слово «космос» происходит от греческого «порядок», но Вселенная находится в постоянном движении и хаосе. Многие эпизодические события все еще не имеют объяснений из-за недостатка данных.

Кстати, не всегда в этом виноват космос. Яркая вспышка в небе, напоминающая взрыв звезды, может оказаться солнечным бликом, отразившимся от антенны спутника связи. Некоторые всплески гамма-излучения, зарегистрированные космическим телескопом НАСА «Ферми», родились не в далеких галактиках, а на Земле во время грозы. Недавно ученых австралийской обсерватории Паркс ввела в заблуждение их собственная микроволновка. Тарелка зарегистрировала таинственные радиосигналы продолжительностью около четверти секунды. Астрономы назвали их перитонами в честь фантастического животного. Оказалось, однако, что перитоны возникают, если дверцу микроволновки открывают раньше времени. Нет очередной космической тайны, есть нетерпеливые астрономы и техники, которым кажется, что обед уже разогрелся. (Это еще одно напоминание о важности абсолютной радиотишины в радиообсерватории.)

Разумеется, настоящие транзиентные события в космосе представляют гораздо больше интереса для астрономов. Некоторые до сих пор остаются необъясненными – например, быстрые радиовсплески (Fast Radio Bursts, FRB). Как и перитоны, это радиоимпульсы продолжительностью не более малой доли секунды, также впервые обнаруженные 64-метровым радиотелескопом обсерватории Паркс. Они действительно приходят из космоса и почти наверняка возникли в далеких галактиках, как и гамма-всплески, но их природа до сих пор неясна. Пока никому не удалось достаточно быстро среагировать на регистрацию нового FRB, чтобы пронаблюдать его в других волновых диапазонах. Как я уже говорил, скорость решает все.

Сегодняшнюю ситуацию с быстрыми радиовсплесками можно сравнить с началом изучения гамма-всплесков. Чаще всего расстояние до них невозможно определить с такой точностью, чтобы судить о реальном выходе энергии. Поскольку наблюдения электромагнитных проявлений в других частотах невозможны, очень сложно воспользоваться методом дополняющих наблюдений. Неудивительно, что голландский астроном, участвовавший в разработке шкалы расстояний для гамма-всплесков, мечтает раскрыть и тайну FRB. С 2006 г. до начала 2017-го Пауль Гроот возглавлял кафедру астрофизики Университета Радбаунд в Неймегене. Как и его коллеги из Южной Африки и Великобритании, он надеется, что совместный проект MeerLICHT станет прорывным[109].

MeerLICHT фактически сводит к нулю время отклика при поиске электромагнитных проявлений. MeerLICHT – это относительно небольшой, 65-сантиметровый, автоматический телескоп, установленный в южноафриканской обсерватории Сазерленд. Он запрограммирован всегда смотреть точно в том же направлении, что и MeerKAT – одна из южноафриканских обсерваторий-целеуказателей в составе SKA примерно в 250 км дальше на севере. Если радиотелескопу удастся наблюдать радиовсплеск (или другой транзиентный источник) с достаточно ярким оптическим проявлением, чтобы быть видимым, робот-телескоп автоматически сделает снимок. Когда важна скорость, самое лучшее – действовать одновременно.

Казалось бы, это многообещающая стратегия обнаружения оптических проявлений гравитационных волн. Однако трудно добиться, чтобы оптический телескоп всегда смотрел в одном направлении с такими детекторами волн Эйнштейна, как LIGO и Virgo. Дело в том, что LIGO и Virgo имеют неизбирательную чувствительность – они зарегистрируют достаточно сильные гравитационные волны независимо от того, с какой стороны они пришли на Землю. И разумеется, чувствительные оптические телескопы не могут постоянно осматривать все небо. Поле зрения телескопа обычно намного меньше видимого размера полной Луны, поэтому астрономам приходится мириться с невозможностью одновременно смотреть во все стороны.

Очевидное решение – система оповещения, разработанная для LIGO и Virgo. Как только зарегистрирована вероятная гравитационная волна, астрономам сообщают, в каком направлении искать ее источник, чтобы они могли задействовать телескопы и космические обсерватории. В принципе, все это можно автоматизировать. Потоки данных лазерного интерферометра постоянно проверяются алгоритмами регистрации. Если сигнал настолько сильный, что требует дальнейшего анализа, – как в случае GW150914 и GW151226, – примерное местоположение его источника в небе можно вычислить. Результаты рассылаются по интернету всем наблюдателям, заключившим официальное соглашение с коллаборацией LIGO – Virgo. Если они используют робот-телескоп, то первые изображения возможного электромагнитного проявления можно получить в течение нескольких минут после регистрации волны Эйнштейна.

1 ... 67 68 69 70 71 72 73 74 75 ... 88
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности