chitay-knigi.com » Домоводство » Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 112
Перейти на страницу:

Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время находится в исходном положении (нулевом напряжении). Напряжение осциллятора B, напротив, меняется от одного снимка к следующему. Решая уравнения, описывающие такую модель, Пескин нашел исчерпывающую, но весьма «навороченную» формулу, описывающую изменения напряжения осциллятора B в промежутках между фотоснимками. Эта формула показала, что в случае, когда это напряжение оказывается меньше определенного критического значения, оно будет неуклонно снижаться, пока не достигнет нуля, тогда как в случае, когда это напряжение оказывается больше критического значения, оно будет неуклонно повышаться, пока не достигнет порогового значения. В любом случае осциллятор B в конечном счете синхронизируется с A. Есть лишь одно исключение: если напряжение осциллятора B в точности равно критическому значению напряжения, его невозможно изменить ни в сторону увеличения, ни в сторону уменьшения, поэтому оно остается в равновесном критическом значении. Осцилляторы A и B запускаются повторно, однако этот запуск происходит несинфазно, а с разницей во времени, составляющей половину цикла. Но это равновесие оказывается неустойчивым: малейший толчок смещает систему в направлении синхронизма.

Несмотря на успешный анализ такого двухосцилляторного случая, выполненный Пескином, случай произвольного количества осцилляторов ждал соответствующего доказательства целых 15 лет. На протяжении этих 15 лет о результатах, полученных Пескином, почти никто не вспоминал. Сведения об этих результатах были похоронены в какой-то заумной монографии, которая, по сути, представляла собой фотокопию конспекта его лекций и которую можно было получить из его отдела лишь по специальному запросу.

Однажды, в 1989 г., я листал книгу под названием The Geometry of Biological Time («Геометрия биологического времени»), написанную биологом-теоретиком Артом Уинфри, одним из героев моей нынешней книги[14]. В то время я был научным сотрудником с ученой степенью, специализировавшимся на прикладной математике в Гарвардском университете, и пытался подобрать какую-либо интересную тему для своих дальнейших исследований. Хотя я размышлял над книгой Уинфри предыдущие восемь лет, она продолжала казаться мне неисчерпаемым источником идей и вдохновения. Она представляла собой не просто изложение результатов последних исследований по биологическим осцилляторам, а своего рода карту для охотников за удачей, руководство к будущим научным открытиям. Почти на каждой странице Уинфри указывал путь к интересным нерешенным проблемам и высказывал собственные соображения относительно того, какие из них в наибольшей степени созрели для того, чтобы за их решение можно было приняться прямо сейчас.

В этой книге я натолкнулся на вариант, которого не замечал прежде: в разделе, посвященном осцилляторам, взаимодействующим посредством ритмических импульсов, Уинфри упоминал о модели, описывающей поведение клеток-ритмоводителей сердца, предложенной Пескином в его монографии. Хотя Пескину удалось проанализировать лишь случай двух идентичных осцилляторов, писал Уинфри, «задача со многими осцилляторами еще ожидает своего решения».

Это разожгло мое любопытство. Что же представляет собой эта фундаментальная загадка, которая все еще ожидает своего решения? Я никогда прежде не слышал о работах Пескина, но указанная им проблема произвела на меня сильное впечатление. Никто даже еще не пытался придумать математический аппарат, который описывал бы большую популяцию из «импульсно-связанных» осцилляторов, взаимодействие в которой осуществляется посредством кратковременных пульсирующих сигналов. Это было ощутимым пробелом в литературе по математической биологии – и к тому же весьма подозрительным пробелом, если принять во внимание широкую распространенность в природе именно такого способа взаимодействия между биологическими осцилляторами. Светлячки мерцают. Сверчки стрекочут. Нейроны посылают электрические сигналы. Все они используют внезапные импульсы для общения друг с другом. Тем не менее, теоретики уклонялись от изучения такой импульсной связи по причине отсутствия подходящего математического аппарата. Импульсы вызывают постоянные скачки переменных, однако у математики возникают большие проблемы при описании таких скачков – математика предпочитает иметь дело с процессами, которые изменяются плавно. Однако Пескину удалось каким-то образом проанализировать два осциллятора, которые периодически воздействуют друг на друга кратковременными импульсами. Каким образом это удалось ему? И что помешало ему перейти от системы с двумя идентичными осцилляторами к системам со многими осцилляторами?

В нашей библиотеке не оказалось экземпляра монографии Пескина, однако Пескин любезно согласился переслать мне соответствующие страницы из этой монографии. Его анализ показался мне весьма элегантным и понятным. Но я быстро понял, почему он ограничился системой лишь с двумя идентичными осцилляторами: несмотря на всю элегантность выполненного им анализа, его формулы оказались чересчур громоздкими. С тремя осцилляторами дело обстояло еще хуже, а система из произвольного количества (n) осцилляторов представлялась вообще неподъемной. Я не понимал, как можно распространить его модель на большое количество осцилляторов и обойти возникающие осложнения.

Чтобы получить более полное представление об этой проблеме, я попытался решить ее на компьютере двумя разными способами. Первый подход заключался в постепенном наращивании сложности системы: я пробовал, подражая стратегии Пескина, найти решение для системы с тремя осцилляторами, используя малые толчки и утечки и перекладывая на компьютер решение всех алгебраических вопросов. Формулы оказались просто устрашающими – некоторые из них простирались на несколько страниц, – но с помощью компьютера мне удалось сократить их до вполне приемлемого вида. Полученные мною результаты показали, что предположение Пескина является, по-видимому, правильным для системы с тремя осцилляторами. Однако эти результаты также говорили о необходимости найти какой-то другой способ решения данной проблемы. С ростом количества осцилляторов используемый мною математический аппарат оказывался неприемлемым.

1 ... 3 4 5 6 7 8 9 10 11 ... 112
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности