Шрифт:
Интервал:
Закладка:
Некоторые трюкачи столь искусны, что забрасывают игральные карты поверх голов зрителей на балкон или даже заставляют их летать наподобие бумерангов.
Почему семена ясеня, вяза или клена могут оставаться в воздухе так долго, что даже легкий ветерок относит их далеко от материнского дерева?
ОТВЕТ • Семена этих деревьев снабжены крылышками, а падают они медленно, поскольку вращаются. Так, крылатка[30] клена вращается вокруг своего центра масс, находящегося между выпуклостью (местом, где расположен плод) и плоским участком крылышка. Наклон плоскости крылышка может достигать 45°. Вращающаяся во время падения крылатка заставляет воздух двигаться вниз, и поэтому на нее действует направленная вверх сила. Эта же сила может еще и подталкивать крылатку в сторону, так что к земле она будет двигаться по винтообразной траектории (рис. 2.3).
Рис. 2.3 / Задача 2.11. Траектория крылатки, крутящейся против направления основного вращения при движении вдоль винтообразной траектории.
Если вы боитесь змей, учтите: есть змея, которая всю жизнь будет вам сниться в ночных кошмарах. Райская украшенная змея (Chrysopelea paradisi) может взбираться на деревья, прыгать с высоты и, планируя, спускаться на землю. Выбрав новую цель, например другое дерево, она может менять траекторию планирования. Как же этой змее удается держаться в воздухе и планировать?
ОТВЕТ • Свисающая с ветки змея прыгает вверх и вперед. Во время прыжка, когда ее тело распрямляется, туловище от головы и дальше к хвосту уплощается. Кроме того, ближе к хвосту на брюхе змеи образуется нечто вроде плоского желоба с опушенными вниз краями. Средняя часть туловища змеи становится вдвое шире исходного диаметра.
Уплощенная часть туловища змеи служит аэродинамической поверхностью, создающей подъемную силу. Поэтому ее планирование чем-то напоминает полет бумажного самолетика. Однако, набрав скорость, змея начинает выделывать нечто совсем на самолетик не похожее: она принимает S-образную форму, а затем начинает совершать горизонтальные колебания с частотой порядка 1,3 колебания в секунду. Немедленно траектория планирования становится более пологой. Это значит, что колебания приводят к увеличению подъемной силы, действующей на змею. Скорость полета змеи порядка 8 м/с, планирует она под углом около 30° и спускается вниз со скоростью около 5 м/с. Она может изменять направление полета, меняя наклон задней части тела или изменяя положение головы, продолжающей совершать колебания.
Как подъемная сила связана с колебаниями змеи, не слишком понятно. Однако можно предположить, что при движении влево-вправо вогнутой задней части тела змеи меняется ориентация ее брюха. Если она действительно меняется, когда змея раскачивается то влево, то вправо, это может привести к увеличению подъемной силы.
Почему при абсолютно одинаковых ударах теннисный мяч, который уже побывал в игре, обычно достигает принимающего быстрее, чем новый?
ОТВЕТ • Время полета теннисного мяча определяется аэродинамическим сопротивлением. Если взять новый мяч и много раз повторить один и тот же удар (одинаковая начальная скорость и угол подачи), аэродинамическое сопротивление сначала возрастает, а затем постепенно уменьшается до некоторого стабильного значения. По-видимому, это связано с ворсом, пушком на поверхности мяча. В начале игры ворс приподнимается и «улавливает» больше воздуха, увеличивая аэродинамическое сопротивление. Однако постепенно ворс вытирается или сглаживается, и аэродинамическое сопротивление падает. Это значит, что подающий игрок находится в несколько более выгодном положении, играя потрепанным мячом, поскольку мяч испытывает меньшее сопротивление, чем новый, и достигает принимающего за меньшее время, затрудняя ответный удар.
Как при свободном ударе футболист посылает мяч таким образом, что он по искривленной траектории огибает стенку из игроков и попадает в ворота? Такой удар, когда с мячом происходит что-то невероятное, называют крученым из-за траектории полета мяча. Он часто застает вратаря врасплох, особенно если из-за стенки тот не видит начало полета мяча.
ОТВЕТ • На рис. 2.4a показан летящий мяч в неподвижном воздухе (вид сверху). Если мы движемся вместе с мячом, нас обтекает воздух, как на рис. 2.4б. Если мяч не закручен, воздух с обеих сторон обтекает мяч симметрично, а затем где-то сзади два воздушных потока отрываются от мяча, образуя вихри. Однако, если мяч закручен (скажем, по часовой стрелке, как на рис. 2.4в), воздушные потоки несимметричны. Теперь поток, двигающийся в направлении, противоположном направлению вращения поверхности мяча, распадается на вихри раньше, а поток, двигающийся вместе с вращающейся поверхностью, удерживается ею и отрывается от нее позднее. Представить себе отрывающийся от вращающегося мяча воздушный поток можно, вспомнив, как отбрасывают грязь вращающиеся шины. Поскольку закрученный мяч меняет направление воздушного потока, отлетает он в противоположном направлении. Следовательно, отклонение воздушного потока вращающимся мячом обуславливает изменение направления его полета. Этот эффект обычно называют эффектом Магнуса по имени исследовавшего его ученого.
Рис. 2.4 / Задача 2.14. a) Полет мяча. б) Картина полета в системе координат, связанной с мячом. в) Вращающийся мяч меняет направление воздушного потока. Мяч отклоняется в сторону. г) Благодаря отклонению мяч обходит стенку и движется к цели.
Предположим, что при выполнении свободного удара мяч отправлен к левому концу защитной стенки и закручен по направлению часовой стрелки (рис. 2.4 г). По мячу надо ударить так, чтобы он начал движение под углом 17° по отношению к земле и пролетел на расстоянии вытянутой руки от последнего игрока в стенке. При движении мяча в воздухе его вращение приводит к отклонению воздушного потока влево, а траектория мяча загибается вправо. Если удар выполнен правильно, мяч аккуратно огибает стенку, достать его невозможно и он летит прямо в ворота.
Чудеса, происходящие с мячом после такого удара, связаны еще и с тем, что во время полета его скорость меняется. Аэродинамическое сопротивление при движении мяча во многом определяется тем, что впереди него образуется область высокого давления, а сзади — вихри низкого давления. По мере замедления мяча размер вихревой области меняется: сначала она увеличивается, а затем уменьшается. Аэродинамическое сопротивление тоже сначала увеличивается, а потом уменьшается. Поэтому сначала мяч замедляется быстрее, а затем все медленнее, что может сыграть злую шутку с вратарем.