chitay-knigi.com » Домоводство » В погоне за Солнцем - Ричард Коэн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 192
Перейти на страницу:

Космологи ждали ответа от коллег Гамова, астрофизиков, и Эддингтон предложил сразу две теории: первая состояла в том, что электроны и протоны взаимно аннигилировали внутри солнечного ядра с сопутствующим превращением массы в энергию. Год спустя он выдвинул вторую теорию, на этот раз верную: Солнце, синтезируя протоны, создает тяжелые атомы, в процессе конвертируя массу в энергию. Но каким образом подобный синтез мог происходить во всепожирающем огне Солнца?

Отличительной чертой этих лет стало то, что многие ключевые открытия делались аутсайдерами – учеными, которых никто никогда не рассматривал в качестве физиков Солнца до их вклада в эту область[339]. У Эддингтона была молодая ученица Сесилия Пейн (1900–1980), которая пяти лет от роду увидела метеорит и решила стать астрономом. После окончания колледжа она познакомилась с Эддингтоном, который посоветовал ей продолжать обучение в Америке; так она стала первым студентом, получившим степень в колледже Гарвардской обсерватории. Экзаменационная комиссия оценила ее работу 1925 года – фотографическое исследование переменных звезд – как лучшую когда-либо написанную диссертацию по астрономии.

Пейн предложила использовать для решения температурной проблемы открытия Резерфорда в области атомной структуры, чтобы показать одинаковый химический состав звезд: их спектры могут могут разниться из-за физических различий, но не из-за внутренней структуры. Водород и гелий присутствовали в самой большой пропорции из пятидесяти семи известных солнечных элементов, как это наблюдалось и в других звездах[340]. Несмотря на этот вывод, она вычеркнула водород и гелий из списка солнечных химических элементов, сочтя свой аргумент спорным.

Позже стало известно, что руководитель Пейн, известный принстонский астроном Генри Норрис Рассел, пытался отговорить ее от этой теории. “Очевидно невозможно, чтобы водорода было в миллион раз больше, чем металлов”, – писал он ей, повторяя расхожее мнение[341]. Но аргументы Пейн не давали ему покоя. Рассел перепроверил солнечные спектры поглощения и был вынужден признать ее правоту: внешняя атмосфера звезд-гигантов в самом деле состояла фактически из чистого водорода с “еле заметным запахом металлических испарений”. Звезды синтезируют гелий из водорода, высвобождая непрерывный поток энергии. И когда внутренняя трансформация элементов внутри звезды порождает колоссальную энергию, как ехидно заметил Гамов, это не что иное, как “трансмутация элементов”, к которой столь безуспешно стремились алхимики в древности[342].

Следующим шагом стало понимание ядерного синтеза. В поздние 1920-е и в начале 1930-х в науке произошел сдвиг в сторону исследований атомного ядра[343], одним из центров этих иследований стал Институт теоретической физики университета Копенгагена под руководством Нильса Бора (1885–1962), “который одевался как банкир и мямлил как оракул”[344]. К 1920-м годам Бор приобрел мировое значение и мог приглашать к себе величайших физиков современности, в том числе Георгия Гамова. Этот выдающийся украинец имел репутацию не только научного гения, но и шутника (например, он иллюстрировал свои работы черепом и костями, чтобы обозначить опасность принятия гипотезы о фундаментальных частицах за чистую монету). В 1928 году он показал, что положительно заряженное ядро гелия (альфа-частица того же сорта, который в неимоверном количестве выбрасывался Солнцем) может выделиться из ядра урана, несмотря на удерживающие его внутри электрические силы[345].

Гамов не только показал, как альфа-частицы выделяются из ядра, он показал, как они смогут к нему присоединяться. Два физика в Кембридже, Джон Кокрофт и Эрнст Уолтон, стали применять теорию Гамова, проверяя, сможет ли очень высокое напряжение “протолкнуть” частицы через внешний периметр ядра. В 1932 году им удалось: впервые ядро одного элемента внедрилось в атом другого искусственным образом, впоследствии этот процесс назвали “делением атома”. В том же “году чудес” другой кембриджский ученый, Джеймс Чедвик, открыл нейтрон – распространенную частицу, обнаруживающуюся практически в каждом ядре. Неожиданно оказалось возможным зарегистрировать огромное разнообразие мощных реакций и даже их инициировать. Наконец стало очевидным, что все эти открытия поддерживают точку зрения Пейн о природе реакций внутри Солнца[346].

Волна важнейших новых работ продолжала нарастать. В 1934 году французский физик Фредерик Жолио и его жена Ирен Кюри (дочь Пьера и Марии) доказали, что в результате бомбардировки стабильных элементов альфа-частицами возникает “новый вид радиоактивности”. Несколькими неделями спустя итальянский физик Энрико Ферми сообщил о сходных результатах в итоге бомбардировки урана нейтронами.

В 1938–1839 годах Ханс Бете (1906–2005), великий американский ядерный физик немецкого происхождения (родом из Страсбурга), к тому времени работавший в Корнелльском университете, написал серию статей, последняя из которых, “Источники энергии в звездах”, объясняла, каким образом звезды, в том числе и Солнце, могли гореть миллиарды лет. Он занимался каталогизацией субатомных реакций, известных на то время, но до 1932-го их было совсем немного. Внезапно случился лавинообразный прирост вновь открытых реакций, и Бете смог понять, какие именно из них объясняли работу Солнца. Он предположил, что колоссальная энергия Солнца была результатом цепочки шести ядерных реакций и именно этот процесс зажигал все звезды во вселенной. Попросту говоря, Солнце было тем, что позже назвали ядерным реактором[347].

1 ... 61 62 63 64 65 66 67 68 69 ... 192
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности