chitay-knigi.com » Разная литература » Симфония № 6. Углерод и эволюция почти всего - Роберт Хейзен

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 60 61 62 63 64 65 66 67 68 ... 85
Перейти на страницу:
но свежие исследования обнаружили другой, довольно неожиданный источник энергии — радиоактивность. В каждой горной породе есть следовые количества радиоактивного урана — возможно, один атом на миллион. Уран в природе распадается чрезвычайно медленно: его период полураспада (с испусканием разрушительных альфа-частиц) равен примерно 4,5 млрд лет. Но горные породы в целом содержат так много его атомов, что медленный и постоянный поток альфа-частиц буквально пропитывает подповерхностную область. Когда альфа-частица «плюхается» в воду, она может разделить H2O на водород и кислород — отличную еду для микробов. Это не очень солидный источник энергии, но, видимо, его достаточно, чтобы поддерживать некоторые крошечные микробные сообщества в течение целых геологических эонов.

Как минералога меня привлекает идея, что история жизни неизбежно связана с минеральным царством. Горные породы и минералы действительно могли служить энергетической отправной точкой для жизни, но есть еще один привлекательный — и даже более многообещающий и надежный — энергетический источник. Вот потому-то жизнь и научилась жить за счет света Солнца.

Вариация 2. Для получения энергии жизнь учится использовать солнечный свет{180}

В течение как минимум миллиарда лет примитивная, связанная с водой микробная жизнь Земли — включая как те клетки, что живут на поверхности, так и те, что находятся глубже, — играла незначительную роль в циркулировании углерода. Общая биомасса Земли была скудна, она ограничивалась маленькими редкими микробными пленками, распространение которых обусловливалось в основном химической энергией свежих вулканических пород, контактирующих с водами океанов. Такое положение должно было измениться, когда жизнь поняла, как использовать гораздо более мощный источник энергии — свет Солнца.

Фотосинтез — потрясающая биологическая инновация. По своей сути фотосинтез, который мы знаем сегодня, с готовностью берет доступные составляющие — простые молекулы воды и углекислого газа плюс энергию солнечного света — и производит целый ряд молекулярных продуктов, необходимых для жизни (вместе с жизненно важным газом кислородом). Этот процесс представлял собой фундаментально новый и эффективный способ циркулирования углерода (сложные детали рассматривать не будем).

В основе фотосинтеза лежит фортуна: нам попросту повезло, что идущие от Солнца волны света, или фотоны, способны нести энергию. Чем короче длина волны, тем больше энергия. Мало того, эта энергия может быть передана атомам в процессе поглощения. Но, как и в истории Златовласки с тремя мисками каши, существует энергическая золотая середина, когда не слишком жарко и не слишком холодно. Для инициирования в биологии необходимой химической реакции нужно, чтобы поглотилось только требуемое для перемещения электронов между атомами количество энергии.

Атомы легко поглощают инфракрасные фотоны с длинами волн больше (и, таким образом, с меньшей энергией), чем у видимого света. Инфракрасные волны заставляют атомы колебаться немного быстрее — мы ощущаем это как тепловую энергию. Когда вы чувствуете тепло Солнца или пылающего костра, ваша кожа поглощает инфракрасное излучение, ее молекулы нагреваются. Воздействие усиливается, если объект черный, что вы, безусловно, испытывали на себе, гуляя босиком по битумному покрытию солнечным летним днем. Однако только самые энергичные из инфракрасных фотонов — с длиной волны, близкой к той, которую мы видим, как красный свет, — обладают достаточной энергией, чтобы перемещать электроны между атомами и таким образом запускать биологические реакции{181}.

Ультрафиолетовое излучение — с другого конца светового спектра — имеет более короткие длины волн, а следовательно, обладает большей энергией, чем видимый свет. У этих потенциально опасных фотонов достаточно энергии, чтобы полностью выбивать некоторые электроны из атомов. Этот процесс, называемый ионизацией, может разрушать атомные связи и фрагментировать важные молекулы. Если вы когда-нибудь обгорали на солнце — в данном случае из-за разрушения молекул погибают клетки кожи, — вы испытывали на себе ионизирующее ультрафиолетовое излучение. Вредные ультрафиолетовые фотоны обладают слишком большой энергией для большинства биологических потребностей.

Золотой серединой оказываются фотоны видимого света, особенно той его части, которая расположена ближе к менее «энергичному» красному концу спектра. Когда кластеры атомов хлорофилла — пигмента зеленых растений — поглощают фотоны красного света, их электроны переходят в возбужденное состояние. Эти электроны могут перескакивать с одного атома на другой, образуя новые химические связи. Фотосинтезирующие микробы пользуются этим удачным свойством фотонов световой и близкой к инфракрасной частей спектра, чтобы поддерживать биологию.

Зловонная жизнь

Самые древние версии фотосинтеза, появившиеся более 3 млрд лет назад, возможно, отличались от процесса, описанного в учебниках, — того, который создает насыщенную кислородом атмосферу Земли. Первые потреблявшие солнечную энергию клетки использовали для поддержания биологических процессов другие химические вещества, к примеру зловонный токсичный газ сероводород H2S — распространенный продукт вулканов. Для поглощения красных длин волн Солнца и перемещения электронов эти зеленые серобактерии осуществляли светопоглощающий процесс, названный «фотосистема I».

На первом его этапе зеленый пигмент освобождает электрон, который затем движется к другим атомам. Пол Фальковски использует удачную метафору в своей увлекательной книге о микробной эволюции «Двигатели жизни»[48]. Перемещение электронов между атомами, замечает он, похоже на переезд пассажиров метро от станции к станции в час пик. Представьте себе, что вы отрицательно заряженная частица (электрон), ожидающая поезд на зеленом пигменте. Отрицательные электрические заряды отталкивают друг друга, поэтому вам не так-то легко будет перепрыгнуть с вашей уютной молекулярной платформы в вагон метро, полный других отрицательных частиц. Но если одетый в форму работник платформы подпихивает вас (как это бывает в некоторых странах!), то вы рискуете оказаться втиснутым в вагон по крайней мере на перегон или два, прежде чем сможете выйти на менее заполненную молекулярную платформу.

Подобным же образом и фотон красного света может обеспечить энергетический пинок, временно перемещающий электрон с пигмента на другие атомы. Когда электрон удаляется, пигмент оказывается положительно заряженным и ему нужен другой электрон. При фотосинтезе эта отрицательная частица может быть взята у атома металла, который, в свою очередь, способен украсть еще один электрон у сероводорода в каскаде химических реакций, расщепляющих сероводород на водород и серу. В итоге же эти продукты химических реакций обеспечивают потрясающее топливо для жизни.

Чтобы не остаться за бортом, другие микробы для извлечения выгоды из бесплатного солнечного ланча развили совершенно иной биохимический путь — фотосистему II. Эти другие микробы, в том числе так называемые пурпурные бактерии, поглощают немного больше энергетических фотонов, чтобы сдвигать и перемещать электроны, но окончательный результат примерно тот же. Электроны перемещаются в цепочке реакций, которые в конечном итоге расщепляют сероводород и вырабатывают топливо для жизни.

Появившись более 3 млрд лет назад, зеленые серные и пурпурные бактерии до сих пор живут в изолированных подводных

1 ... 60 61 62 63 64 65 66 67 68 ... 85
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.