chitay-knigi.com » Разная литература » Интернет-журнал "Домашняя лаборатория", 2008 №5 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 58 59 60 61 62 63 64 65 66 ... 137
Перейти на страницу:
принципиально отличается. Кодирующие белок участки генома занимают меньше 3 %, тогда как остальная часть выполняет регуляторные и другие, пока неизвестные функции. Система регуляции работы генов человека (и других млекопитающих) гораздо сложнее. Никаких уникальных биохимических процессов клетки человека не проводят, зато те процессы (общие для всего живого мира), которые идут, включаются и выключаются в нужное время и в нужной части тела в соответствии с генетической программой. Например, перед человеческим геном, контролирующим переработку лактозы, найдены два регуляторных участка. Один определяет место, другой — время работы гена. Первый указывает, что ген должен работать только в клетках слизистой кишечника, ведь именно здесь расщепляются поступившие с пищей сахара. Второй полностью отключает работу гена по окончании периода грудного вскармливания (у человека в возрасте 3–5 лет), так как в естественных условиях детеныши млекопитающих получают лактозу только с материнским молоком, а взрослым особям фермент не нужен. Однако у некоторых людей в этом регуляторном участке имеется мутация, которая «разрешает» синтез фермента у взрослых. Такие люди могут пить молоко, тогда как у носителей исходного, немутантного варианта молоко не усваивается, что приводит к расстройству пищеварения.

Записанная в генах человека программа развития реализуется в процессе роста и деления клеток, от первого деления зародышевой клетки до последнего вздоха на жизненном пути. Судьба каждой клетки — станет ли она клеткой эпителия или превратится в нейрон, лейкоцит или эритроцит — определяется тем, какие группы генов в ней работают. Постоянно работают во всех клетках только так называемые гены «домашнего хозяйства» — то есть те, которые заняты синтезом клеточных структур, производством энергии, ремонтом молекулы ДНК. Большая же часть генов обычно бездействует, и необходимы специальные сигналы для того, чтобы они активизировались. Например, гены, контролирующие форму тела, расположены на хромосомах несколькими блоками, причем идут один за другим в том же порядке, в каком и контролируемые ими части тела: сначала гены, которым положено работать в голове, потом гены грудного отдела, потом те, которые определяют развитие задней части тела. Включаются они по очереди. Причем эти свойства генов «домашнего хозяйства» присущи и человеку, и животным. Так, в экспериментах на мухах показано, что если порядок включения генов нарушен, то могут получиться монстры, каких не придумать и Спилбергу, — с дополнительными ногами вместо антенн на голове или с глазами на брюшке и крыльях. У человека известные мутации (на латыни «мутация» означает «изменение») в этих генах также приводят к нарушениям — к изменению положения органов или, например, отсутствию некоторых зубов. Более серьезные нарушения останавливают развитие плода.

Хотя прочтена последовательность нуклеотидов всего генома человека, функции большинства генов по-прежнему неизвестны. Многие гены в нуклеотидной последовательности выявлены лишь с помощью компьютерного анализа (см. «КТ» # 413), и их существование следует подтвердить не вычислительными, а экспериментальными методами. Мы видим текст, но не понимаем, что он означает. Кроме знания структуры и функций генов, нужно еще представлять, чем отличается их работа в разных клетках и на разных этапах развития. И еще — знать, как взаимодействуют генные продукты. Порой утрата довольно больших фрагментов генома не приводит к заметным последствиям. А в других случаях замена всего лишь одной буквы из трех миллиардов приводит к тяжелому заболеванию.

Генные технологии

Теперь мы можем попытаться понять, каким образом генетики вмешиваются в работу наследственных программ. До появления биотехнологии и методов генной инженерии генетические изменения тоже, конечно, происходили, но шли они совершенно иными темпами. С очень значительными генетическими изменениями связана вся эволюция жизни на Земле, насчитывающая более трех миллиардов лет. От времени существования общего предка обезьяны и человека прошло пять миллионов лет, накопившиеся за это время изменения затронули 1,5 % их генетических текстов. Селекционная работа, которую человек вел на протяжении десяти тысячелетий существования производящего хозяйства, также вызвала изменения геномов культурных растений и одомашненных животных, являвшихся объектом отбора. Да и сами люди были вынуждены приспосабливаться (в том числе и на генетическом уровне) к создаваемой ими самими среде обитания.

Заставить ген одного организма работать в геноме другого можно лишь при соблюдении определенных условий. Во-первых, к чужеродному гену следует «подшить» регуляторные элементы подходящего хозяйского гена с тем, чтобы он включился в нужное время в нужной ткани (например, чтобы его продукт секретировался в молоко у коровы), а также элементы, обеспечивающие его встраивание в геном или самостоятельное воспроизведение в хозяйской клетке. Во-вторых, нужно обеспечить систему введения генетической конструкции в клетки хозяина. Технологии «кройки и шитья» генов для всех одинаковы, а вот системы введения ДНК в клетки организма-хозяина сильно различаются. Сейчас такие системы отработаны и для микроорганизмов, и для растений, и для некоторых животных, причем существуют методы введения ДНК в клетки, размножаемые в пробирках, и методы, пригодные для модификации сформированного организма. Последние используют для генотерапии, то есть лечения наследственных болезней путем введения человеку «здоровых» генов.

Еще одно условие — работа гена не должна вредить самому организму-хозяину. Например, устойчивость трансгенного картофеля к колорадскому жуку обеспечена введением в растительный геном бактериального гена, контролирующего синтез белка, токсичного для насекомых (причем не для всех, а для определенной группы) и безвредного для растений, животных и человека. После генетической модификации полученный уникальный организм следует размножить. Для этого используется клонирование.

Клонирование

Клонирование (от греч. клон — ветвь, побег) — точное воспроизведение того или иного живого объекта в некотором количестве копий. Этим термином обозначают два совершенно разных процесса — клонирование (то есть получение идентичных копий) фрагментов ДНК и клонирование клеток взрослого организма (то есть получение группы клеток с одинаковым генотипом).

Клонирование фрагментов ДНК широко используется в молекулярной генетике, так как изучать небольшой участок (размером сотни или тысячи пар нуклеотидов) гораздо легче, чем целую хромосому. Для этого изучаемый фрагмент вводят в клетки микроорганизмов. В частности, в биотехнологии именно с помощью клонирования фрагментов ДНК в бактериях получают клетки, продуцирующие нужные медицине человеческие белки.

Клонирование растений всем известно — это размножение растений черенками. А эксперименты по клонированию животных впервые осуществили в начале 1950-х годов американские эмбриологи Роберт Бриггс и Томас Кинг (Robert Briggs, Thomas King), пересадившие ядро зрелой клетки лягушки в яйцеклетку, собственное ядро которой было удалено. В России такие эксперименты были проведены даже несколько раньше Георгием Лопашевым, но его результаты не были опубликованы из-за преследований генетиков в сталинское время. Английскому ученому Джону Гердону (John Gurdon) удалось усовершенствовать методику и добиться того, что из 1–2 % яйцеклеток с пересаженным ядром вывелись лягушата. Из остальных яйцеклеток или развивались дефектные эмбрионы, или не развивались вообще — слишком велики были повреждения

1 ... 58 59 60 61 62 63 64 65 66 ... 137
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности