chitay-knigi.com » Разная литература » Думай «почему?». Причина и следствие как ключ к мышлению - Джудиа Перл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 116
Перейти на страницу:
ли она. Действительно, в повседневной жизни мы каким-то образом способны выносить суждения о причине, не проходя через такой сложный процесс и точно не обращаясь к математике вероятностей и пропорций. Одной нашей интуиции о причинности обычно достаточно, чтобы справиться с неопределенностью, с которой мы сталкиваемся каждый день дома или даже на работе. Но, если мы захотим научить тупого робота думать о причинах или раздвинуть границы научного знания, заходя в области, где уже не действует интуиция, тщательно структурированная процедура такого рода будет обязательной.

Я хочу особенно подчеркнуть роль данных в вышеописанном процессе. Для начала примите во внимание, что мы собираем данные, предварительно построив модель причинности, сформулировав научный запрос, на который хотим получить ответ и определив оцениваемую величину. Это противоречит вышеупомянутому традиционному для науки подходу, в котором даже не существует причинной модели.

Однако современная наука ставит новые вызовы перед теми, кто практикует рациональные умозаключения о причинах и следствиях. Хотя потребность в причинной модели в разных дисциплинах становится очевиднее с каждым днем, многие исследователи, работающие над искусственным интеллектом, хотели бы избежать трудностей, связанных с созданием или приобретением причинной модели, и полагаться исключительно на данные во всех когнитивных задачах. Остается одна, в настоящий момент безмолвная надежда, что сами данные приведут нас к верным ответам, когда возникнут вопросы о причинности.

Я отношусь к этой тенденции с откровенным скепсисом, потому что знаю, насколько нечувствительны данные к причинам и следствиям. Например, информацию об эффекте действия или интервенции просто нельзя получить из необработанных данных, если они не собраны путем контролируемой экспериментальной манипуляции. В то же время, если у нас есть причинная модель, мы часто можем предсказать результат интервенции с помощью данных, к которым никто не прикасался.

Аргументы в пользу причинных моделей становятся еще более убедительными, когда мы пытаемся ответить на контрфактивные запросы, предположим: «Что бы произошло, если бы мы действовали по-другому?». Мы подробно обсудим контрфактивные запросы, потому что они представляют наибольшую сложность для любого искусственного интеллекта. Кроме того, развитие когнитивных навыков, сделавшее нас людьми, и сила воображения, сделавшие возможной науку, основаны именно на них. Также мы объясним, почему любой запрос о механизме, с помощью которого причины вызывают следствия, — самый прототипический вопрос «Почему?» — на самом деле контрфактивный вопрос под прикрытием. Таким образом, если мы хотим, чтобы роботы начали отвечать на вопросы «Почему?» или хотя бы поняли, что они значат, их необходимо вооружить моделью причинности и научить отвечать на контрфактивные запросы, как показано на рис. 1.

Еще одно преимущество, которое есть у причинных моделей и отсутствует в интеллектуальном анализе данных и глубинном обучении, — это способность к адаптации. Отметим, что на рис. 1 оцениваемая величина определяется на базе одной только причинной модели — еще до изучения специфики данных. Благодаря этому механизм причинного анализа становится невероятно адаптивным, ведь оцениваемая величина в нем подойдет для любых данных и будет совместима с количественной моделью, какими бы ни были числовые зависимости между переменными.

Чтобы понять, почему эта способность к адаптации играет важную роль, сравните этот механизм с системой, которая пытается учиться, используя только данные. В этом примере речь пойдет о человеке, но в других случаях ей может быть алгоритм глубинного обучения или человек, использующий такой алгоритм. Так, наблюдая результат L у многих пациентов, которым давали лекарство D, исследовательница в состоянии предсказать, что пациент со свойством Z проживет L лет. Но теперь ее перевели в новую больницу в другой части города, где свойства популяции (диета, гигиена, стиль работы) оказались другими. Даже если эти новые свойства влияют только на числовые зависимости между зафиксированными переменными, ей все равно придется переучиваться и осваивать новую функцию предсказания. Это все, на что способна программа глубинного обучения — приспосабливать функцию к данным. Однако, если бы у исследовательницы была модель для действия лекарства и если бы ее причинная структура оставалась нетронутой в новом контексте, то оцениваемая величина, которую она получила во время обучения, не утратила бы актуальности. Ее можно было бы применить к новым данным и создать новую функцию предсказания.

Многие научные вопросы выглядят по-другому «сквозь линзу причинности», и мне очень понравилось возиться с этой линзой. В последние 25 лет ее эффект постоянно усиливается благодаря новым находкам и инструментам. Я надеюсь и верю, что читатели этой книги разделят мой восторг. Поэтому я хотел бы завершить это введение, анонсировав некоторые интересные моменты книги.

В главе 1 три ступени — наблюдение, интервенция и контрфактивные суждения — собраны в Лестницу Причинности, центральную метафору этой книги. Кроме того, здесь вы научитесь основам рассуждений с помощью диаграмм причинности, нашего главного инструмента моделирования, и встанете на путь профессионального овладения этим инструментом. Более того, вы окажетесь далеко впереди многих поколений исследователей, которые пытались интерпретировать данные через линзу, непрозрачную для этой модели, и не знали о важнейших особенностях, которые открывает Лестница Причинности.

В главе 2 читатели найдут странную историю о том, как научная дисциплина статистика развила в себе слепоту к причинности и как это привело к далеко идущим последствиям для всех наук, зависящих от данных. Кроме того, в ней излагается история одного из величайших героев этой книги, генетика Сьюалла Райта, который в 1920-е годы нарисовал первые диаграммы причинности и долгие годы оставался одним из немногих ученых, осмелившихся воспринимать ее серьезно.

В главе 3 рассказывается равно любопытная история о том, как я обратился к причинности, работая над искусственным интеллектом — особенно над байесовскими сетями. Это был первый инструмент, который позволил компьютерам понимать «оттенки серого», и какое-то время я полагал, что они содержат главный ключ к искусственному интеллекту. К концу 1980-х годов я пришел к убеждению, что ошибался, и эта глава описывает мой путь от пророка до отступника. Тем не менее байесовские сети остаются очень важным инструментом для искусственного интеллекта и по-прежнему во многом определяют математическое основания для диаграмм причинности. Помимо постепенного знакомства с правилом Байеса и байесовскими методами рассуждения в контексте причинности, глава 3 представит увлекательные примеры того, как байесовские сети можно применить в реальной жизни.

Глава 4 рассказывает о главном вкладе статистики в причинный анализ — рандомизированном контролируемом исследовании (РКИ). С точки зрения причинности РКИ — это созданный человеком инструмент, позволяющий вскрыть запрос P (L | do (D)), возникший в природе. Главная его цель — отделить интересующие нас переменные (скажем, D и L) от других переменных (Z), которые в противном случае повлияли бы на обе предыдущие. Избавление от осложнений, вызванных такими неочевидными переменными,

1 2 3 4 5 6 7 8 9 10 ... 116
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности