Шрифт:
Интервал:
Закладка:
Предки E. coli перестраивали свои схемы по мере адаптации к новому образу жизни. Иногда самого крохотного изменения в схеме достаточно для получения нового важного приспособления; к примеру, таким изменением может стать добавление лишнего переключателя или удаление одного из имеющихся. Один из подобных слегка измененных контуров позволяет E. coli почувствовать падение уровня кислорода и вовремя перейти на древний бескислородный метаболизм. Этот контур почти полностью — с точностью до гена — идентичен контуру, отвечающему за чувствительность к кислороду у Haemophilus influenzae — вида бактерий, обитающих в крови. У Haemophilus один переключатель активирует два гена, которые затем активируют все остальные гены, необходимые бактерии для перехода на бескислородный обмен. Это быстрый механизм, вполне соответствующий потребностям Haemophilus influenzae, поскольку обитает эта бактерия в крови и всякий раз при переходе из артерий в вены сталкивается с резким падением уровня кислорода в окружающей среде.
С другой стороны, E. coli не спешит переключаться, ощутив лишь легкое падение уровня кислорода. Поскольку обитает она в относительно стабильной обстановке — в кишечнике, ей, в отличие от гемофилюса, редко приходится испытывать его внезапное и долгосрочное падение. Легкая флуктуация уровня кислорода может оказаться ложной тревогой, и мгновенная реакция легко могла бы заставить E. coli потратить кучу энергии на производство ферментов, которые потом не пригодятся. Это жизненное обстоятельство отразилось в кислородном контуре E. coli. Он во всем идентичен контуру Haemophilus influenzae, за исключением одного лишнего гена — narL.
У гемофилюса переключатель /л г сразу же включает гены frdB и frdC. Но у E. coli для их активации требуется также сигнал от narL. Чтобы fnr сумел поднять уровень белка NarL до величины, нужной для получения двумя генами обоих необходимых сигналов, требуется определенное время. При небольшом падении уровня кислорода этот процесс просто не успеет завершиться.
В ходе эволюции управляющая схема E. coli стала весьма и весьма устойчивой. Развитие искусственных, созданных человеком сетей помогает представить себе, как это происходило. Интернет, способный донести ваши электронные письма в любой уголок земного шара, появился не сразу в готовом виде. Он возник в 1969 г. как примитивная связь между компьютерами Калифорнийского университета в Лос — Анджелесе и Стэнфордского исследовательского института в Пало- Альто (штат Калифорния). Постепенно, с годами, к системе подключались новые организации, между ними возникали новые связи. Интернет стал устойчивым благодаря принципам своей архитектуры. Но ведь в 1969 г.никто не писал и не разрабатывал точных спецификаций на весь Интернет! Они появились сами по ходу развития. Компьютерщики, как правило, заботились в первую очередь о том, как работает каждый небольшой участок сети. Их беспокоила стоимость дальних соединений между серверами, поэтому они старались сделать все связи как можно более короткими.
Управляющая схема E. coli формировалась похожим образом. По мере того как происходила случайная дупликация генов, сеть усложнялась. Мутации соединяли заново некоторые новые гены, так чтобы они могли взаимодействовать с другими генами. Естественный отбор подхватывал благоприятные мутации и отвергал остальные. Создавая эффективные небольшие контуры, эволюция заодно формировала и устойчивую сеть.
На дуврском судебном процессе по поводу преподавания разумного замысла в школе креационисты с удовольствием сравнивали биологические системы с техническими устройствами. С их точки зрения, если что‑то в устройстве E. coli или другого организма напоминает машину, значит, это что‑то было сконструировано и создано неким разумом. И все же в конечном итоге все доказательства разумного замысла притянуты за уши. Тот факт, что E. coli и созданная человеком сеть в некоторых отношениях поразительно похожи, вовсе не означает, что микроорганизмы появились в результате разумного замысла. На самом деле факт сходства означает, что конструкторская мысль человека намного менее разумна, чем мы привыкли полагать. Наши лучшие изобретения возникают не в результате величественного полета к сияющим вершинам мысли, а в результате медленного близорукого перебора бесконечных вариантов.
Уберите из генома E. coli новые гены — выскочек, обеспечивающих сопротивляемость к пенициллину и другим лекарствам. Уберите более старые гены, которые E. coli приобрела в течение миллионов лет после отделения от других бактерий. Удалите более глубокие слои — те, что отвечают за строительство жгутиков, и те, которые к настоящему моменту настолько разрушены, что ни на что не годны. Удалите гены, отвечающие за муреиновый мешок, за сенсоры, регистрирующие появление пищи и опасности, за фильтры и усилители. Избавьтесь от генов, кодирующих белки, которые присутствовали еще у последнего общего предка всех живых организмов около 4 млрд лет назад.
Что же у вас останется? Не подумайте, что чистый лист. По — прежнему останется целый ряд отдельных загадочных кусочков ДНК. Это не совсем обычные гены. E. coli использует их для синтеза РНК, но никогда не использует эту РНК для производства белков. Эти гены — аналог первого, самого древнего текста на нашем палимпсесте. Ученые подозревают, что многие из них — следы древнейших организмов, существовавших на Земле до появления ДНК.
Сырье, которое использует жизнь, ничем не отличается от обычной безжизненной материи. Углерод, фосфор и другие элементы, входящие в состав нашего тела, возникли в глубинах звезд. Многие необходимые для жизни химические вещества могут быть созданы без ее участия. Полетав немного по Солнечной системе, можно было бы собрать на метеоритах и кометах немало аминокислот, формальдегида и других соединений, найденных в организме живых существ. Многие из этих веществ вошли в состав нашей планеты при ее формировании 4,5 млрд лет назад; позже их доставляли на Землю и постоянно падающая комическая пыль, и — время от времени — более крупные куски камня или льда. Сама планета работала как огромный химический реактор: калила, смешивала, фильтровала эти вещества, производя, вероятно, из них новые соединения, тоже необходимые для жизни; они присутствовали на Земле задолго до того, как появилась сама жизнь. Но есть великая тайна, которая из века в век привлекает к себе внимание ученых: как именно в этом реакторе появилась жизнь такая, какой мы ее знаем, — вместе с закодированной в двойной спирали ДНК информацией, РНК и белками.
В 1960–е гг. ученые, разобравшись более или менее с основами молекулярной биологии, пришли к единому мнению о том, что все три типа молекул не могли возникнуть на безжизненной Земле одновременно. Но какие появились первыми? Пусть ДНК — прекрасное хранилище информации, но без участия белков и РНК это всего лишь необычная нитевидная молекула. С другой стороны, белки выполняют невероятное количество функций, они способны захватывать проплывающие мимо атомы, штамповать новые молекулы или делить уже существующие молекулы на части. Но они не слишком подходят для хранения информации о строительстве белков и для передачи этой информации следующим поколениям.