Шрифт:
Интервал:
Закладка:
Первые инженерные проекты полета на Марс появились еще в 1920-е годы. Пионером тут выступил инженер Фридрих Цандер, веривший в существование «каналов», марсиан и разрабатывавший проект межпланетного ракетоплана. Константин Циолковский, которого Цандер считал своим учителем, тоже подумывал об экспедиции на Марс, но считал, что на первом этапе достаточно будет облететь красную планету без высадки на ее поверхность. И Циолковский, и Цандер уже тогда понимали, что двигатели на химическом топливе не подходят для столь грандиозного космического путешествия. Они видели выход в создании принципиально новых транспортных средств, использующих испаряемый металл в качестве топлива и атомный реактор в качестве источника энергии для испарения этого металла.
Качественный переход к транспортной системе следующего поколения необходим прежде всего потому, что пилотируемая экспедиция к Марсу и обратно в самом идеальном варианте займет минимум два года. На эти два года экипаж необходимо обеспечить всем необходимым: кислородом, водой, продуктами питания, гигиеническими принадлежностями, медицинскими препаратами и оборудованием. Самые оптимистичные расчеты, сделанные на заре космической эры, показывали, что корабль без топлива должен весить порядка 100 т. А мы помним, что по формуле Циолковского потребное для разгона топливо значительно превышает «сухую» массу корабля.
Фрагмент рукописи Константина Циолковского, в которой он выводит свою знаменитую формулу (1897 год)
Давайте разберем этот вопрос по порядку, хотя нам придется повторить уже пройденное. В первой главе мы коснулись понятия «характеристической» скорости – суммарной скорости, которая включает в себя все приращения/сокращения скорости ракетно-космической системы при разгонах/торможениях, необходимых для полета к другой планете, для выхода на ее орбиту и для возвращения к Земле. «Характеристическую» скорость можно прямо подставлять в формулу Циолковского, чтобы приблизительно оценить количество топлива, необходимое для такого путешествия. В первой главе я указал, что для достижения Луны по схеме «Сатурн-Аполлон» (т. е. когда корабль с ракетой стартуют с Земли, а возвращается только спускаемая капсула, парашютирующая в атмосфере) требуется «характеристическая» скорость около 25 км/с. Для полета на Марс в самом идеальном случае требуется 30 км/с. Допустим, мы собираем корабль на орбите и, следовательно, можем отбросить 8 км/с, которые «забирают» на себя сверхтяжелые ракеты-носителя, придавая модулям корабля первую космическую скорость. Отбросим также вторую космическую скорость 11 км/с, с которой корабль будет возвращаться от Марса, из предположения, что мы не собираемся сажать его на Землю, а ждем только спускаемую капсулу с экипажем, которая затормозит за счет парашютов. Все равно получается значительная величина – 11 км/с.
Возьму расчетную часть на себя, не затрудняя вас просмотром таблиц и работой с калькулятором. Для тех, кто давно в теме, сообщаю, что я использовал формулу Циолковского в самом элементарном виде, подставляя в нее «характеристическую» скорость 11 км/с и предполагая, что «сухая» масса корабля с экипажем и грузом составляет 100 т. В таком варианте я менял только одну величину – теоретически достижимый удельный импульс (или «удельную тягу») при атмосферном давлении на срезе сопла (так называемый «расчетный случай»). С помощью удельного импульса, измеряемого в секундах, сравнивают топлива и двигатели друг с другом: чем он выше, тем топливо эффективнее, а двигатель совершеннее. Можно сказать и по-другому: чем выше удельный импульс, тем большую скорость можно развить при той же массе топлива, поскольку топливо сгорает медленнее при прочих равных условиях. Причем реально достижимый удельный импульс для двигателя заметно ниже теоретического импульса, рассчитанного для соответствующего топлива. Скажем, теоретический удельный импульс для топлива «кислород-керосин» – 335 секунд, но один из лучших советских кислородно-керосиновых двигателей РД-107, который стоял на ракете Р-7 и работает ныне на ракетах «Союз», смог вытянуть только 257 секунд, а модернизированный РД-107А, установленный на новейших ракетах «Союз-ФГ» и «Союз-2» – 263,3 секунды. Как видите, современным ракетным двигателям есть куда расти. Но мы в своих расчетах благородно возьмем максимальное теоретическое значение, чтобы сферический конь в вакууме стал по-настоящему сферическим. Для оценки используем четыре вида топлив: «кислород-керосин» (удельный импульс 335 секунд; это топливо активно используется в космонавтике), «кислород-водород» (удельный импульс 428 секунд; это топливо считал лучшим Константин Циолковский), «фтор-водород» (449 секунд; это топливо считается перспективным сегодня) и некое многокомпонентное высокоэнергетическое топливо будущего (500 секунд; такой физический предел определил для химических топлив немецкий ученый Эйген Зенгер).
В результате простого расчета получилось вот что. Для марсианского корабля массой 100 т, использующего в качестве топлива кислород-керосин, понадобится 2 742 т топлива; для использующего кислород-водород – 1 273 т; для использующего фтор-водород – 1 115 т; для использующего «предельное» многокомпонентное топливо Зенгера – 842 т.
Тут следует заметить, что в космосе удельный импульс выше за счет естественного повышения разницы давлений внутри и вне двигателя. Но всю выгоду легко «сожрет» масса криогенного оборудования, необходимого для хранения и распределения жидких топлив. Так что наши оценки близки к истине, и сферический конь массой 100 т потребует для полета к Марсу и обратно свыше 800 т самого лучшего топлива, которое еще и не создано. Чудовищная масса, если вдуматься! Даже если завтра появится ракета-носитель, способная выводить 200 т на опорную орбиту, потребуется как минимум пять запусков огромных ракет, чтобы собрать корабль. Однако напомню, «предельного» химического топлива имени Эйгена Зенгера пока нет в природе.
РД-107 – двигатель первой ступени ракеты «Р-7»
Подобные расчеты делались неоднократно. И почти сразу изобретатели стали предлагать варианты, как обойти суровую формулу. Например, упомянутый Фридрих Цандер предлагал сжигать в двигателе часть корабля – от этого получалась двойная выгода: облегчение конструкции и использование новых топлив. Именно он впервые сформулировал концепцию электро-ракетного двигателя, имеющего серьезные преимущества перед двигателями на химическом топливе.
В электроракетных двигателях (ЭРД) рабочее тело разогревается с помощью электричества и подается в реактивное сопло, создавая тягу. Первое преимущество налицо: такому двигателю не нужен окислитель, который занимает львиную долю топливных баков. Второе не так очевидно, но тоже имеет физический смысл: наиболее эффективны те виды топлива, которые обладают большей плотностью. Опыты с электроракетными двигателями начались в Советском Союзе уже в мае 1929 года под руководством талантливого молодого ученого Валентина Глушко, который работал в Газодинамической лаборатории в Ленинграде, а много позже стал одним из главных конструкторов ракетной техники и академиком.