chitay-knigi.com » Медицина » Двигатели жизни. Как бактерии сделали наш мир обитаемым - Пол Фальковски

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 58
Перейти на страницу:

Статья, описывающая предполагаемые доказательства существования жизни на Марсе, была опубликована 6 августа 1996 года в журнале Science – одном из самых уважаемых научных журналов в мире. Она, несомненно, привлекла внимание читателей и снова пробудила огромный интерес к поискам жизни на красной планете. Тогдашний президент Соединенных Штатов Билл Клинтон через день после выхода в свет статьи созвал пресс-конференцию на Южной лужайке Белого дома, заявив: «Сегодня этот камень под номером 84001 говорит с нами через разделяющие нас миллиарды лет и миллионы миль.

Двигатели жизни. Как бактерии сделали наш мир обитаемым

Рис. 38. Вверху: электронная микрофотография цепочки магнитных (магнетитовых) частиц. Они выстроены внутри бактерии и формируют магнетосому – структуру, позволяющую клетке чувствовать направление магнитного поля. Такие структуры чрезвычайно малы, характеризуются совершенной формой и высокой упорядоченностью; они вырабатываются и контролируются бактерией. (Публикуется с разрешения Ацуко Кобаяси.) Внизу: сделанная под сканирующим электронным микроскопом микрофотография полированного образца из метеорита Алан-Хиллз (ALH84001). В верхнем правом углу обнаруживается цепочка продолговатых магнетитовых частиц (показана стрелкой). Такая структура аналогична тем, которые находят в магнитотактических бактериях. (Публикуется с разрешения Я. Вешхоса и К. Аскаско.)

Он говорит о возможности жизни. Если это открытие подтвердится, оно, несомненно, станет одним из самых ошеломляющих научных открытий относительно окружающей нас Вселенной. Трудно себе представить, настолько далеко идущими и впечатляющими будут его последствия. И хотя это открытие обещает нам дать ответы на некоторые из самых давних наших вопросов, оно тут же ставит новые, еще более фундаментальные». Это выступление появилось на передовицах всех ведущих газет мира и обозначило новое направление деятельности НАСА.

Хотя интерпретация микроскопических структур в метеорите Алан-Хиллз остается чрезвычайно неоднозначной, она привлекла большое внимание к двум ключевым вопросам науки: «Где впервые возникла жизнь?» и «Одни ли мы во Вселенной?» Многие ученые добавляют также: «Не марсиане ли мы?» Джо Киршвинк порой принимается доказывать, что вся жизнь на Земле произошла в результате заражения нашей планеты организмами, занесенными с марсианским метеоритом.

Последующие анализы ALH84001 трудно примирить с нашими знаниями о том, что такое жизнь. Большинство геологов сейчас отказались от идеи о том, что этот метеорит содержит убедительные следы ископаемых микроорганизмов, однако процесс, который привел к возникновению идеально оформленных магнетитовых цепочек, остается загадкой. В любом случае открытие этого метеорита, несомненно, послужило стимулом для новых поисков потенциальных следов существовавшей ранее или ныне существующей жизни на Марсе.

Джерри Соффен убедил руководителя НАСА Дэна Голдина послать на Марс новые посадочные модули и развернуть поиски жизни в других местах Вселенной. Однако чтобы удостовериться в том, что для НАСА это не будет просто преходящим интересом, Джерри убедил НАСА разработать программу по астробиологии и в 1998 году курировал создание Астробиологического института НАСА. Одной из наиболее интересных и сложных задач, поставленных перед этим институтом, был поиск свидетельств существования жизни в границах нашей Солнечной системы и за ее пределами.

В новом тысячелетии НАСА успешно доставило на поверхность Марса несколько новых вездеходов, и каждый последующий из них был оборудован все более сложной аппаратурой, предназначенной для поиска следов жизни. Было приложено множество усилий, чтобы найти такие газы, как метан или закись азота, наличие которых указывает, хотя и не бесспорно, на существование микробиотической жизни. До настоящего момента не было получено положительных результатов, не говоря уже об окончательных выводах. Эти исследования будут продолжаться на протяжении последующих десятилетий; также планируется доставить образцы марсианской почвы и горных пород на Землю для более тщательного анализа. Эти исследования требуют большого напряжения инженерной мысли, и нам удалось многое узнать о марсианской истории. Однако вместе с тем мы смотрим дальше вперед, не переставая задаваться вопросом: «Одни ли мы во Вселенной?»

В 1972 году в рамках программы «Аполлон» НАСА запустило первый телескоп космического базирования. Этот инструмент фиксировал ультрафиолетовое излучение, которое не доходит до поверхности Земли вследствие того, что атмосфера поглощает большую часть излучения в этой части спектра. Это положило начало серии самых значительных открытий относительно нашей Вселенной с тех пор, как Галилей впервые описал луны Юпитера.

Телескопы предназначены для того, чтобы распознавать свет; однако, не имея помехи в виде земной атмосферы, космические телескопы могут получать изображения очень отдаленных объектов в хорошем разрешении. Они способны обнаруживать чрезвычайно малые различия в свете звезд нашей Галактики Млечный Путь.

В 1988 году три канадских астронома, Брюс Кэмпбелл, Гордон Уокер и Стивенсон Янг, сообщили о периодических изменениях длин волн излучения двойной звезды Гамма Цефея, расположенной на расстоянии приблизительно 45 световых лет от Земли. Системы двойных звезд содержат две звезды, обращающиеся вокруг общего центра масс; они встречаются довольно часто. Изменение длин волн, зафиксированное астрономами, было результатом того, что регистрируемый свет доходил то быстрее, то медленнее в результате доплеровского смещения. Ученые предположили, что причиной доплеровского смещения является планета, вращающаяся вокруг одной из звезд и тем самым принуждающая звезду изменять собственную орбиту. Они назвали эту планету «Гамма Цефея Ab». Их сообщение было встречено скептически, и лишь в 2002 году оно подтвердилось. Гамма Цефея Ab была первой планетой, обнаруженной за пределами нашей Солнечной системы, однако к 2014 году имелось уже около двух тысяч подтвержденных сообщений о планетах вне Солнечной системы, и каждый год открываются сотни новых. Однако как узнать, есть ли на планете жизнь? Все они находятся настолько далеко, что мы не сможем доставить вездеходы даже на ближайшую из таких планет ни при нашей жизни, ни при жизни наших детей, внуков и правнуков. Давайте рассмотрим, почему.

Два спутника, «Вояджер-1» и «Вояджер-2», запущенные в 1977 году, в настоящий момент покидают пределы нашей Солнечной системы, пролетев около 18 млрд километров со средней скоростью около 500 млн километров в год, или около 35 тысяч миль в час. При такой скорости они смогут достичь ближайшей к Земле звезды Проксима Центавра, находящейся на расстоянии 4,2 световых года от нас, приблизительно через 80 тысяч лет. Не думаю, что мы готовы ждать так долго, чтобы выяснить, одни ли мы во Вселенной, особенно если у этой звезды не окажется обитаемых планет. К счастью, у астрономов имеются и альтернативные методы поиска жизни за пределами нашей Солнечной системы.

Один из них связан с только что упоминавшимся доплеровским смещением света звезды из-за изменений ее орбиты, вызванных соседством обращающегося вокруг звезды небесного тела. Этот метод достаточно однозначен: любая звезда, вокруг которой обращается планета, сама тоже имеет орбиту. Орбита планеты может быть обнаружена по изменениям длины световых волн, возникающим в спектральных линиях звезды. Когда звезда смещается немного в нашу сторону (то есть в сторону нашего космического телескопа), спектральные линии смещаются в сторону голубой части спектра (более короткие волны). Когда она удаляется, спектральные линии смещаются в сторону красной части спектра (более длинные волны). Чем крупнее планета, тем заметнее этот эффект, поэтому большинство планет, обнаруженных на настоящий момент, являются гигантами наподобие Юпитера или Сатурна. Масса этих планет в сотни раз превышает массу Земли, и на большинстве из них нет суши или океанов – они состоят из газа. Трудно себе представить, чтобы на таких планетах могла существовать жизнь.

1 ... 49 50 51 52 53 54 55 56 57 58
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности