chitay-knigi.com » Домоводство » На лужайке Эйнштейна. Что такое НИЧТО, и где начинается ВСЕ - Аманда Гефтер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 53 54 55 56 57 58 ... 131
Перейти на страницу:

На самом деле, они действительно похожи на черную дыру. Граница между недоступной для такого наблюдателя областью и всей остальной Вселенной – это тоже горизонт событий, известный как горизонт Риндлера. Он обладает всеми теми же свойствами, что и горизонт событий черной дыры, и всеми теми же релятивистскими странностями: растягивающиеся световые волны, замедляющее ход время и полная его остановка на горизонте. Его энтропия так же пропорциональна его площади – соотношение, которое Хокинг открыл для черных дыр. Где энтропия, там температура. Где температура, там тепло. Где тепло, там частицы.

Эти частицы называют по-разному: частицы Риндлера, излучение Унру, излучение Унру – Дэвиса, излучение Хокинга – Унру. Во всех случаях подразумевается одно и то же: частицы, рожденные на зависящем от наблюдателя горизонте событий. В самом деле, горизонт черной дыры и горизонт Риндлера полностью идентичны на языке уравнений. Они могут показаться очень разными физическими явлениями, но с точки зрения математики они неразличимы. И если вы подумаете, то легко обнаружите очевидную причину этой неразличимости – принцип эквивалентности. Эйнштейн говорил, что гравитация и ускорение эквивалентны. Не просто похожи или аналогичны, а эквивалентны. Два взгляда на одно и то же. Если гравитация может создать горизонт событий, то же может сделать ускорение.

Представим себе Сэйфа и Скруда в обычном плоском пространстве, свободном от черных дыр. Сэйф – мой ускоренный наблюдатель – в силу наличия ускорения в плоском пространстве формирует горизонт событий. Если он на лету достает термометр, он измерит ненулевую температуру вокруг себя, как следствие появления частиц Риндлера – Унру – Дэвиса – Хокинга. Но попросите Скруда сделать то же самое, и его термометр не зарегистрирует ничего. Это звучит как безумие: два наблюдателя находятся в одном и том же пространстве, но один видит себя окруженным частицами, а другой в то же самое время не видит ничего, кроме пустого пространства. И единственная разница между ними состоит в том, что у Скруда нет горизонта событий. Сэйф физически реструктурирует вакуум и создает реальные измеряемые частицы, благодаря всего лишь определенной точке зрения. Частицы существуют объективно, но лишь для него одного.

Многие годы я подозревала, что секретный ингредиент, позволяющий превратить ничто моего отца, то есть бесконечное безграничное однородное состояние, в нечто – это как раз граница и есть. После разговора с Фотини Маркопулу я стала думать, не может ли собственное поле зрения наблюдателя, с неизбежностью ограниченое его световым конусом, позволить ему проделать такой же фокус. Все же я была настроена скептически и не могла представить себе, чтобы световой конус был способен физически превращать ничто в нечто. В конце концов, световой конус – это всего лишь система отсчета, это не материальный объект во Вселенной. Но, возможно, мой скепсис был безосновательным. Я узнала о границах, зависимых от наблюдателя, которые создают частицы, не используя ничего более физического, чем его система отсчета. Разумеется, горизонты событий – нечто совсем иное. В отличие от световых конусов, они зависят от времени и формируются динамически. Но интригующее сходство все равно было, и я записала, а затем подчеркнула в своем блокноте: «Горизонты показывают, как система отсчета наблюдателя может физически реструктурировать Вселенную. Или, может быть, H-состояние».

Во всем этом было какое-то безумие. И главное – ни для Сэйфа, ни для Скруда вакуумное состояние не было чем-то реальным. Теория относительности показала, что пространство и время были разными для разных наблюдателей. Они не были инвариантными. Они не были настоящими. Теперь было ясно, что вакуумные состояния, а с ними частицы, должны были покинуть наш список. Частицы были не настоящими. Их существование зависит от наблюдателя.

А ведь это уже было заложено в самом определении частиц как неприводимых представлений группы Пуанкаре. Эту группу образуют глобальные преобразования плоского пространства-времени, но глобальные преобразования бесполезны при наличии горизонта событий. Горизонт требует от нас локальных определений, разрезания единого глобального взгляда на отдельные, зависящие от наблюдателя фрагменты. Проблема состоит в том, что не существует уникального, выделенного способа такого разбиения, в разных фрагментах будет свой вакуум, возникнет ряд несоизмеримых картин реальности, ни одна из которых не будет более истинной, чем остальные. Искривленное пространство-время – с гравитацией, с горизонтами событий – не обладает симметрией Пуанкаре. Уберем симметрию, и мы потеряем четкое определение частиц. Как только у вас геометрия пространства-времени начинает зависеть от наблюдателя – она может быть плоской, как ее видит Скруд, и в то же время изогнутой, как ее видит Сэйф, – вы переносите двусмысленность на совершенно новый уровень. Теперь нельзя задавать вопрос: «Существует ли частица?» Теперь нам необходимо каждый раз уточнять: «Существует ли частица в системе отсчета Сэйфа?» И словно этого было недостаточно, чтобы взорвать мой мозг, я обнаружила еще и третий вид горизонта событий – тот, который буквально определяет границы Вселенной.

Если у вас есть наблюдатель, двигающийся с ускорением в плоском пространстве, то вы получите горизонт Риндлера. Но вскоре я обнаружила, что ситуацию можно поменять на обратную и придать ускорение самому пространству, пока наблюдатель вроде Скруда остается неподвижным в своей инерциальной системе отсчета. При расширении пространства ускоренными темпами свет может проходить конечное расстояние даже за бесконечное время: не важно, какое расстояние пройдено светом – расширяющееся пространство постоянно подсовывает ему новую задачу, как выползающая лента бегового тренажера. Некоторые лучи света никогда не смогут достичь Скруда. Таким образом, какая-то часть Вселенной будет для него вечно темной. Эту темную область ограничивает горизонт событий – деситтеровский горизонт.

Виллем де Ситтер был первым физиком, который усмотрел спрятанную в уравнениях Эйнштейна Вселенную, расширяющуюся с ускорением – Вселенную, совершенно лишенную материи, более пустую, чем холодное межзвездное пространство. Просто обширное, бесплодное ничто.

Только это было не совсем ничто. В ткань пространства вплеталась странная форма энергии, которая проявляла своего рода антигравитационный эффект, оборачивалась силой, расталкивающей пространство, заставляя Вселенную расширяться. Она возникала из-за, казалось бы, безобидного члена в уравнениях общей теории относительности – космологической постоянной. В ней заключалось свойство пространства самого по себе, поэтому, а также потому, что она была константой, расширение не истончало эту странную антигравитирующую энергию – чем больше пространства, тем ее становилось больше. Из-за этого возникал эффект разбегания: расширение Вселенной происходило все быстрее и быстрее по мере того как она становилась все больше и больше. Было нечто противоположное гравитационному коллапсу – образование черной дыры наоборот.

Когда в 1917 году де Ситтер предложил свою модель, Эйнштейн был убежден, что она неверна. Она явно противоречила двум главным философским установкам Эйнштейна – во-первых, что пространство-время без материи не может существовать, и, во-вторых, что Вселенная статична. Вечна. Занимаясь своими уравнениями, Эйнштейн верил, что именно космологическая постоянная заякорит Вселенную на месте, исключив как ее расширения, так и сжатия.

1 ... 50 51 52 53 54 55 56 57 58 ... 131
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности