Шрифт:
Интервал:
Закладка:
Таким образом, в процессе эволюции должен достигаться своего рода регуляторный компромисс между требованиями адаптивности (соответствия внешним условиям) и требованиями целостности системы.
Первая группа требований, диктуемая отношениями организма с внешней средой, стремится увеличить роль внешних регуляций (чтобы адекватно реагировать на изменение условий).
Вторая группа требований, диктуемая целостностью онтогенеза и организма, стремится увеличить роль внутренних регуляций (чтобы отдельные части и функции сложной системы, подогнанные друг к другу, развивались и действовали согласованно).
У более сложных организмов регуляторный компромисс должен все больше склоняться в сторону преобладания внутренних регуляций (чем сложнее система, тем более опасным становится рассогласование ее частей). Это необходимо чем-то компенсировать, поскольку такое нарастающее «замыкание» регуляций внутри организма ведет к росту несоответствия между требованиями меняющейся среды и поведением живого существа, которое становится саморегулирующимся и самодовлеющим.
Как можно это компенсировать? По-видимому, несколькими способами:
1. формированием принципиально новых внешних регуляторных связей, причем новые регуляторы должны действовать не непосредственно на базовые процессы в организме, а на системы их внутренней регуляции;
2. повышением независимости организма от внешних условий путем поддержания внутреннего гомеостаза (температуры тела, pH, осмотического давления и др.), чтобы внешние факторы реже вступали в противоречие с внутренними процессами;
3. искусственным созданием или нахождением для себя подходящих условий (термитники, гнезда, другие укрытия или жилища); преобразованием среды; активным перемещением в места, где условия благоприятны (сезонные миграции птиц, суточные миграции планктона и др).
Очевидно, что любой из перечисленных путей требует дальнейшего усложнения организма и онтогенеза. Первый путь вводит новые регуляторные связи — это, так сказать, усложнение «по определению». Второй путь требует прогрессивного развития обмена веществ, покровных тканей — здесь тоже без усложнения всей системы не обойтись. Третий путь требует развития нервной системы — регуляторики самого высокого уровня.
В этом можно заметить механизм положительной обратной связи: усложнение системы ведет к конфликту, снятие которого возможно только путем дальнейшего усложнения[55].
Сняв путем усложнения старые конфликты, организм неизбежно сталкивается с новыми. Система стала сложнее, и, следовательно, поддержание ее целостности требует совершенствования внутренних регуляций, а это, как мы знаем, ведет к новому разрыву между «замыкающейся на себя» живой системой и изменчивой средой.
Может быть, в этом состоит одна из причин наблюдаемого ускорения прогрессивной эволюции. Биологи давно заметили эту общую тенденцию: чем сложнее организм, тем быстрее он эволюционирует по пути дальнейшего усложнения. Причины этого до сих пор не вполне ясны.
Еще один важный теоретический вопрос, который можно рассмотреть на нашем примере с Metazoon, — это вопрос о возникновении адаптивных модификаций. Так называют способность организма более или менее осмысленно (то есть целесообразно) менять свое поведение, строение и онтогенез в зависимости от внешних условий, причем без изменений генома. Простейший пример — мышцы увеличиваются от упражнения.
Модификации — это типичные «благоприобретенные признаки». Синтетическая теория эволюции отрицает возможность наследования модификаций, а ламаркизм основан на признании возможности их наследования. Сам Дарвин в этом отношении был ламаркистом: он считал, что наследование модификаций, возникающих в ходе упражнения органов, вполне возможно.
Вопрос о наследовании приобретенных признаков мы рассмотрим в главе 8, а сейчас займемся другой проблемой, может быть, даже более важной: откуда берется сама адаптивная модификация? Ведь ясно, что способность адекватно изменяться в зависимости от условий — это особый сложный механизм, он не может просто «быть заложен изначально» в свойствах живой материи. Способность к полезным модификациям вырабатывается в ходе эволюции, как и любые другие приспособительные свойства организма. В дальнейшем «модифицированное» состояние может зафиксироваться и стать наследственной нормой. Но самое главное — понять, как возникают новые модификации, ведь именно в этот момент происходит эволюционное новообразование. Многие биологи-теоретики справедливо полагают, что превращение модификации в стойкий наследуемый признак — это акт упрощения, а не усложнения. Действительно, организм, способный к модификации, имеет два или более возможных путей развития, из которых он выбирает один в зависимости от условий. Организм, у которого один из этих путей наследственно закрепился и стал единственно возможным, явно проще исходного.
Посмотрим, каким образом у Metazoon модификация может развиться на основе случайной изменчивости. Допустим, существует Metazoon, у которого из всего разнообразия потенциально возможных жизненных циклов реализуется только два — «двухклеточный» и «четырехклеточный».
Будем считать, что у этого организма клетки с Px < 4 приступают к мейозу раньше, чем одновременно созревшие клетки с Px > 4 приступают к митозу. Допустим, что это свойство уже зафиксировалось в геноме и не подвержено изменчивости. Это позволит четырехклеточному организму не превращаться чуть что в восьмиклеточный, а нам упростит изложение.
Какой цикл из двух возможных будет избран, изначально определяется чистой случайностью. Все зависит от того, какая из клеток двухклеточного организма поделится первой — передняя или задняя, а это вполне может быть делом случая. Такую ситуацию легко себе представить. Обе клетки находятся на одной стадии зрелости, поэтому то, какая из них начнет делиться чуть раньше, может зависеть от массы случайных факторов.
Теперь представим себе, что в популяции начал действовать отбор. Например, некое хищное существо стало избирательно заглатывать четырехклеточники, не трогая при этом ни двух-, ни одноклеточные стадии.
Следовательно, станут избирательно выживать и размножаться те Metazoon, у которых на двухклеточной стадии передняя клетка делится первой и которые поэтому не достигают четырехклеточной стадии. В этой изменившейся ситуации ни нас, ни Metazoon уже не удовлетворят разговоры о «чистой случайности»! Придется разбираться: от чего же все-таки зависит, какая из двух клеток поделится первой?