Шрифт:
Интервал:
Закладка:
0. Идея немножко вбок, и возможно практически бесполезная, но зато простая и дешёвая: "стратосферный спутник бедняка".
На высоте 67 км, атмосфера Земли состоит на 70 % по объёму из азота, на 10 % из кислорода, и на 20 % …из водорода. То есть, при общем давлении в 10 Па, 7 Па приходится на N2, 1 Па на O2, и 2 Па на H2.
Эта смесь не горит из-за очень низкого давления: при термическом возбуждении колебательных уровней молекул, они будут оптически высвечивать всю тепловую энергию газа до того, как произойдёт реакция. (Хотя, возможно, что очень мощным взрывом в стратосфере всё же можно создать кольцевую ударную волну, которая далее будет распространяться и усиливаться в такой среде. Тогда жители Земли смогут в течении нескольких часов наблюдать интересное, и довольно опасное явление; запас водорода в атмосфере составляет десятки миллиардов тонн, и его выгорание может на несколько часов превысить баланс поступления солнечной энергии).
Другой способ сжигать такую смесь — внести в неё катализатор (активные молекулы или пылинки, на которых будет осуществляться встреча молекул водорода с кислородом). В принципе, можно себе представить облако каталитической пыли в стратосфере, которое будет ярко светиться и обогревать и освещать северные города. На эту пыль, к тому же, будут действовать газодинамические силы из-за разности температур и концентрационных потоков молекул, позволяющие, в принципе, даже управлять её движением… Но мы рассмотрим самый простой вариант.
Возможно (хотя я не утверждаю наверняка), что, если поместить поперёк потока такого газа пористую проволоку или тонкую трубку, диаметром 1 мм, из каталитически активного материала (никеля или других металлов), то за счёт реакций на поверхности и в порах эта проволока будет нагреваться примерно до 1000К. При скорости потока газа 200 м/с, тепловая мощность такой системы может достичь 20–30 кВт/м2.
Если переднюю по потоку газа поверхность такой проволоки теплоизолировать, и сделать в 2–3 раза холоднее задней поверхности, то на горячую проволоку, обтекаемую разреженным газом (с длиной свободного пробега молекул примерно 1 см), будет действовать нескомпенсированная сила динамического давления до 5 Па; это, в принципе, можно использовать для создания тяги, достаточной для полёта дозвукового аппарата массой в несколько килограммов.
При этом, такой аппарат будет иметь бесконечный запас топлива, при тепловой мощности двигателя в десятки киловатт, и может летать до тех пор, пока не выгорит катализатор. Функционально, это спутник; хотя летит низенько и медленно, зато практически даром, и в отличие от ИСЗ может произвольно маневрировать. В принципе, можно сделать и гиперзвуковой вариант с тепловым прямоточным двигателем, но это сложнее и дороже.
Для военных целей, эта разработка не столько опасная для противника, сколько раздражающая: стоит дёшево, а сбить нечем.
4. Безракетная система доставки грузов на околоземную орбиту.
Почему, собственно, мне не нравятся ракеты: они мне нравятся, любые — кроме больших ракет на жидком топливе.
При старте с поверхности Земли, ракета должна быть достаточно большой, и по возможности тяжёлой, чтобы сократить расходы на аэродинамическое сопротивление атмосферы. Это, а также крупные габариты грузов, в особенности для пилотируемых запусков, диктует эффективный размер ракет — около ста тонн для керосиновых, и тысяча тонн для водородного топлива.
Но, чтобы поднять большую ракету, нужны большие двигатели, и что более важно, высокое начальное давление в камерах сгорания, 300–500 атмосфер. Твердотопливные, гибридные и жидкостные ракеты с вытеснительной системой подачи топлива не могут обеспечить начальное давление газов более 100–200 атмосфер, и при стартовой массе более 100 тонн единственным вариантом остаются жидкостные ракеты с насосной подачей топлива под высоким давлением.
Формально, они являются самыми эффективными по удельному импульсу; но всё портит большой и дорогостоящий агрегат — топливный насос, который к тому же наиболее часто является причиной отказов, и делает этот тип ракет самыми дорогими в разработке, и экономически неэффективными при эксплуатации. Сухим весом они стоят как золото.
Кроме того, жидкое топливо в больших тонкостенных баках делает для этих ракет невозможными такие полезные вещи, как миномётный или пушечный старт, что вполне возможно для твердотопливных ракет, и позволяет экономить десятки процентов стартовой массы.
Но, не все грузы, которые надо доставлять на орбиту, большие; для межпланетных полётов основным грузом будет топливо, а для орбитальных станций кислород и вода, и всё это можно расфасовать по 1 килограмму.
Такие грузы дешевле было бы доставлять маленькими твердотопливными ракетами с высотным аэростатным запуском. При этом, удельный импульс криогенного твёрдого топлива может быть на уровне жидкого топлива с такими же компонентами. Несколько лет назад я считал, что именно такая схема — лёгкие дешёвые ракеты с высотным запуском — будет самой эффективной по цене доставки килограмма груза на орбиту.
Но сейчас, как мне кажется, я могу предложить что-то лучшее.
4.1 Почему не пушка.
Если бы не атмосфера, то самый экономичный способ запуска снаряда с поверхности земли — это пушка или катапульта, разгоняющая снаряд, желательно, сразу до первой или даже второй космической скорости.
Это, в принципе, возможно даже с использованием обычной взрывчатки, или тем более криогенной топливной смеси со скоростью истечения газов 4–5 км/с. (Ещё в конце 19 века многокаморная пушка на чёрном порохе разогнала снаряд до 2200 м/с). Если же использовать горячий водород, то можно получить и много большую скорость, примерно в 2,5 раза превышающую максимальную скорость истечения газа.
Проекты таких пушек есть, и при правильном проектировании стоимость такой системы будет не слишком высокой, с учётом окупаемости.
Но, это почти бесполезно из-за большого сопротивления воздуха и тепловых нагрузок при старте. Чтобы преодолеть атмосферу на скорости 6–8 км/с, снаряд должен быть тяжёлым, иметь специальную форму и теплозащиту, и для полезного груза в нём почти не останется места. Применение таких систем возможно, но ограничено узким кругом задач, в том числе из-за большого ускорения при старте.
Тем не менее, для доставки топлива на орбитальную заправочную станцию такая система подошла бы, если бы можно было поднять её повыше — хотя бы на высоту 15–20 километров. Но тут проявляется главный недостаток таких систем, который не заметен, пока пушка находится на земле (а чаще, под землёй): большой вес такой системы, который в 1000 и более раз превышает вес снаряда.
Аэростат или другой воздушный аппарат может поднять максимум несколько тонн;