Шрифт:
Интервал:
Закладка:
У этой небольшой тусклой звезды есть по крайней мере две планеты, обнаруженные методом доплеровской спектроскопии, и, возможно, еще пять (если вы верите в слабо различимые спектральные признаки, которые вполне могут оказаться шумом) — итого семь. Наше внимание привлекает Глизе 667 Cc, вторая подтвержденная планета в этой системе. Ее масса примерно в четыре раза превосходит массу Земли, и, хотя ее орбитальный радиус в четыре раза меньше, чем расстояние от Меркурия до нашего Солнца, она лежит в пределах зоны обитаемости своей относительно холодной родительской звезды.
Это удивительный и загадочный мир. Он получает лишь на 10 % меньше энергии, чем Земля получает от Солнца, — очень даже неплохо. В этом мире солнце кажется тусклым красным шаром по размеру в два раза большим, чем наше Солнце, большая часть его излучения лежит за пределами той части спектра, к которой приспособилось наше зрение в ходе эволюции. Звезды класса М, обладающие малой массой, характеризуются значительно большей электромагнитной активностью, чем наше Солнце, и регулярно выбрасывают огромные протуберанцы, поэтому близкое расположение зоны обитаемости создает угрозу для любых форм жизни на поверхности планет.
Слишком уж экзотично, на ваш взгляд? Ну, ничто не сравнится с домом, это понятно. Тогда, может, что-нибудь попроще? Скажем, Кеплер 22b. Первый транзит Кеплер 22b был обнаружен телескопом «Кеплер» спустя всего лишь три дня после начала миссии — 12 мая 2009 г. Родительская звезда Кеплер 22 расположена на расстоянии 620 световых лет от Земли и очень похожа на Солнце, лишь немного меньше и холоднее. Радиус Кеплер 22b в 2,4 раза больше Земли, и, по всей видимости, она обладает твердой каменистой поверхностью.
Радиус орбиты Кеплер 22b немного меньше земного, но, поскольку Кеплер 22 чуть холоднее, чем наше Солнце, Кеплер 22b, вероятно, находится в пределах зоны обитания: если подсчитать равновесную температуру для этой планеты, окажется, что она равна 11 °C. Не забывайте, однако, что это минимальная температура на планете без учета атмосферы, которая создает парниковый эффект.
Допустим, Кеплер 22b обладает атмосферой, сходной с атмосферой Земли. В этом случае температура на поверхности будет равна комфортным 22 °C, что немного теплее, чем средняя температура на поверхности Земли, равная 15 °C. Это прекрасно, но что, если атмосфера окажется больше похожей на атмосферу Венеры или даже Марса? Не стоит удивляться, если дополнительный нагрев поверхности за счет парникового эффекта в атмосфере окажется таким, как на Венере (слишком большим), или даже как на Марсе (практически нулевым). Возможно, это хорошая возможность проанализировать, каковы могут быть максимальные и минимальные значения температуры на Кеплер 22b с учетом того, что мы не знаем состава ее атмосферы.
Хотя Кеплер 22b представляет для нас большой интерес, мы, сожалению, не знаем ее массу. Более того, хотя мы предполагаем, что орбита Кеплер 22b круговая, существует вероятность, что она окажется эллиптической, и, двигаясь по орбите, планета будет входить в зону обитания и выходить из нее, что приведет к возникновению разительных колебаний поверхностной температуры.
Обнаружение потенциально пригодных для жизни миров — мы будем называть их двойниками Земли — всегда вызывало огромный общественный резонанс. Но кроме открытия планет, о которых я рассказал вам ранее, «Кеплер» также дал нам не менее содержательную статистическую картину: оказалось, что количество двойников Земли в нашей галактике Млечный Путь исчисляется миллиардами. Существование таких двойников Земли — главная причина того, почему экзопланеты вошли в первую пятерку моего списка. Специализированные миссии, такие как «Кеплер», а также проведение спектроскопических измерений лучевой скорости звезд позволяют нам обнаружить планетные системы, где могут присутствовать условия для существования жизни.
Я намеренно выразился так осторожно, и слово «могут» тут ключевое. Лишь в нескольких случаях нам удалось измерить плотность планеты, и, следовательно, нельзя с уверенностью сказать, что это каменные миры, а не газовые. Некоторые из этих планет лежат в пределах зоны обитания своих родительских звезд — и, зная это, мы можем хотя бы приблизительно вычислить среднюю температуру на их поверхности. Атмосфера и условия, пригодные для жизни, могут существовать на одной из уже известных нам планет. Но у нас нет на этот счет никакой уверенности. Даже если мы обнаружим 1000 потенциально обитаемых миров, может оказаться, что 999 из них — стог сена и только один — иголка, которую мы ищем. Вероятность обнаружить действительно пригодный для жизни мир, не говоря уже о самой жизни, может оказаться даже меньше, чем это соотношение.
Мне хотелось бы еще раз предупредить, что желание ограничить наши поиски жизни исключительно землеподобными мирами говорит о недальновидности. Стоит лишь вспомнить миры в нашей Солнечной системе, которые совсем не похожи на Землю, но тем не менее представляют большой интерес для астробиологов. Мы только приступаем к поискам жизни на экзопланетах, и нам надо с чего-то начинать, а землеподобные миры в обитаемых зонах своих родительских звезд не хуже любого другого варианта.
На сегодняшний день перед нами «стог» землеподобных миров размером с галактику, и запланированные на следующее десятилетие космические миссии, вероятно, откроют еще больше. Однако после обнаружения подобных планет нас ожидает еще один важный этап — нам надо будет определить, есть ли у них атмосфера. И чтобы показать, зачем это нужно, я приглашаю вас бросить беглый взгляд из космоса на наш земной дом.
Когда в 1989 г. космический аппарат «Галилео» начал свое путешествие к Юпитеру, он двигался по сложной извилистой траектории вокруг планет внутренней Солнечной системы. «Галилео» облетел вокруг Венеры, а потом вокруг Земли, и даже не по одному, а по два раза, каждый раз совершая гравитационный маневр, увеличивавший его скорость. Прохождение в непосредственной близости от планет представляло собой уникальную возможность. Мог ли этот космический аппарат, построенный и оснащенный для исследования физического окружения Юпитера, повернуть свои камеры и датчики в сторону Земли? Какое представление о ней сложится у этого межпланетного исследователя? Сможет ли «Галилео» установить наличие жизни на Земле?
Карл Саган был среди тех, кто хорошо понимал, что пролет «Галилео» на близком расстоянии от Земли — уникальная возможность смоделировать сближение межпланетного космического зонда с живой планетой. Что же получилось в результате? «Галилео» сблизился с Землей в декабре 1990 г., а еще три года спустя в научном журнале Nature появилась большая статья, написанная группой ученых под руководством Карла Сагана. Статья была озаглавлена «Поиски жизни на Земле с борта космического аппарата „Галилео“». Так что же обнаружил «Галилео»?
Для начала: поверхностность Земли обладает характерным цветом — бортовой панорамный спектрограф обнаружил, что она сильно поглощает синюю и зеленую части видимого света. Инфракрасная область по соседству с видимой областью практически не затронута. Четкая граница поглощения получила название «красный край». Никакая известная нам горная порода или реголит не могли дать такого эффекта — это спектральный признак биологического пигмента хлорофилла, который выработался в результате многих миллионов лет эволюции. Хлорофилл поглощает синие и зеленые лучи солнечного спектра. Инфракрасные фотоны несут меньше энергии и просто отражаются, чтобы избежать перегрева.