chitay-knigi.com » Разная литература » Интернет-журнал "Домашняя лаборатория", 2008 №1 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 150
Перейти на страницу:
биоконверсии продуктов фотосинтеза и их производных в белок с помощью грибов. Эти организмы благодаря наличию мощных ферментных систем способны утилизировать сложные растительные субстраты без предварительной обработки. Исследования условий биоконверсии растительных субстратов в микробный белок активно ведутся в США, Канаде, Индии, Финляндии, Швеции, Великобритании, в нашей стране и других странах мира. Однако в литературе сведения о широкомасштабном производстве белков микробного происхождения немногочисленны. Наиболее известным и доведенным до стадии промышленной реализации является процесс "Ватерлоо", разработанный в университете Ватерлоо в Канаде. Это процесс, основанный на выращивании целлюлозоразрушающих грибов Chaetomium cellulolyticum, можно осуществлять как в глубинной культуре, так и поверхностным методом. Содержание белка в конечном продукте (высушенном грибном мицелии) составляет 45 %. Финская фирма "Тампелла" разработала технологию и организовала производство белкового кормового продукта "Пекило" на отходах целлюлозно-бумажного производства. Продукт содержит до 60 % протеина с хорошим аминокислотным профилем и значительное количество витаминов группы В.

В большинстве стран — производителей молока традиционным способом утилизации сыворотки является скармливание её животным. Степень конверсии белка сыворотки в белок животного весьма невысока (для выработки 1 кг животного белка необходимо 1700 кг сыворотки). В последние 10–15 лет из сыворотки методом ультрафильтрации выделяют белки высокого качества, на основе которых делают заменители сухого обезжиренного молока и другие продукты. Концентраты можно использовать как пищевые добавки и компоненты детского питания. Из сыворотки производится и молочный сахар — лактоза, применяемая в пищевой и медицинской промышленности. При всем при этом объем промышленной переработки сыворотки составляет 50–60 % от её общего производства. Следовательно, налицо большие потери ценнейшего молочного белка и лактозы. Более того, возникает проблема утилизации отходов, так как процесс естественного разложения сыворотки происходит крайне медленно. Лактоза молочной сыворотки может служить источником энергии для многих видов микроорганизмов, сырьем для производства продуктов микробного синтеза (органических кислот, ферментов, спиртов, витаминов) и белковой биомассы. Из всех известных микроорганизмов самым высоким коэффициентом конверсии белка сыворотки в микробный белок обладают дрожжи.

Впервые дрожжи на молочной сыворотке стали выращивать в Германии. В качестве продуцентов применяли различные штаммы сахаромицетов. Разработаны способы получения микробных продуктов, основанные на использовании лактозы как монокультурой, так и смесью дрожжей и бактерий. В настоящее время в качестве продуцентов используют дрожжи родов Candida, Trichosporon, Torulopsis. Молочная сыворотка с выросшими в ней дрожжами по биологической ценности значительно превосходит исходное сырье и её можно использовать в качестве заменителя молока. Приведенный перечень микроорганизмов и процессов получения белка одноклеточных не является исчерпывающим. Однако потенциал этой новой отрасли производства используется далеко не полностью. Кроме того, мы еще не знаем всех возможностей деятельности микроорганизмов в качестве продуцентов белка, но по мере углубления наших знаний, они будут расширены.

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МИКРОБНЫХ ЛИПИДОВ

Под липидами подразумеваются все растворимые в неполярных растворителях клеточные компоненты микроорганизмов. В настоящее время ведутся поиски новых источников получения жиров, в том числе и на технические нужды. Этим источником могут стать микроорганизмы, липиды которых после соответствующей обработки пригодны для использования в различных отраслях промышленности: медицинской, химико-фармакоцевтической, лакокрасочной, шинной и других, что позволит высвободить значительные количества масел животного и растительного происхождения.

Технологический процесс получения микробных липидов, в отличие от получения белковых веществ, обязательно включает стадию выделения липидов из клеточной массы методом экстракции в неполярном растворителе (бензине или эфире). При этом получают одновременно два готовых продукта: микробный жир (биожир) и обезжиренный белковый препарат (биошрот).

Сырьем для этого процесса являются те же среды, что и для производства кормовой биомассы. В процессе культивирования микроорганизмов на различных средах получаются три класса липидов: простые, сложные липиды и их производные.

Простые липиды — нейтральные жиры и воски. Нейтральные жиры (основные запасные компоненты клетки) — эфиры глицерина и жирных кислот, основная масса которых триацилглицериды (есть, впрочем ещё и моно- и диглицериды). Воски — эфиры жирных кислот или моноооксикислот и алифатических спиртов с длинной углеродной цепью. По структуре и свойствам близки к нейтральным липидам. Наибольшее количество нейтральных липидов синтезируют дрожжи и мицелиальные грибы. Простые липиды находят применение как технологические смазки в процессах холодной и тепловой обработки металлов. Продуцентами сложных липидов являются в основном бактерии.

Сложные липиды делятся на две группы: фосфолипиды и гликолипиды. Фосфолипиды (фосфоглицериды и сфинголипиды) входят в состав различных клеточных мембран и принимают участие в переносе электронов. Их молекулы полярны и при pH 7,0 фосфатная группа несет отрицательный заряд. Концентрат фосфолипидов находит применение в качестве антикоррозийной присадки к маслам и как добавка при флотации различных минералов. Гликолипиды в отличие от фосфолипидов не содержат молекулы фосфорной кислоты, но также являются сильнополярными соединениями за счет наличия в молекуле гидрофильных углеводных групп (остатков глюкозы, маннозы, галактозы и др.).

К производным липидов относят жирные кислоты, спирты, углеводороды, витамины Д, Е и К. Жирные кислоты представлены насыщенными и ненасыщенными с одной двойной связью кислотами нормального строения и четным числом углеродных атомов (пальмитиновая, стеариновая, олеиновая). Среди диеновых жирных кислот можно выделить линолевую. Двойные связи в ненасыщенных жирных кислотах микробных липидов часто располагаются так, что делят их на части, число углеродных атомов в которых кратно трем. Очищенные монокарбоновые кислоты с числом углеродных атомов 14–18 находят широкое применение в мыловаренной, шинной, химической, лакокрасочной и других отраслях промышленности.

Спирты, присутствующие в липидах, делятся на три группы: спирты с прямой цепью, спирты с β-ионовым кольцом, включающие витамин А и каротиноиды, а также стерины — компоненты неомыляемой части липидов (например, эргостерин, облучение которого ультрафиолетовым светом позволяет получать витамин Д2).

Для промышленного использования важное значение имеет способность усиленно накапливать липиды. Этой способностью обладают немногие микроорганизмы, в первую очередь дрожжи. Процесс образования липидов у большинства дрожжей состоит из двух четко разграниченных стадий:

— первая характеризуется быстрым образованием белка в условиях усиленного снабжения культуры азотом и сопровождается медленным накоплением липидов (в основном глицерофосфатов и нейтральных жиров);

— вторая — прекращением роста дрожжей и усиленным накоплением липидов (в основном нейтральных).

Типичными липидообразователями являются дрожжи Cryptococcus terricolus. Они могут синтезировать большое количество липидов (до 60 % от сухой массы) в любых условиях, даже наиболее благоприятных для синтеза белка.

Из других липидообразующих дрожжей промышленный интерес представляют дрожжи С. guilliermondii, утилизирующие алканы. Они синтезируют в основном фосфолипиды. Накапливают большие количества липидов и активно развиваются на углеводных субстратах (на мелассе, гидролизатах торфа и древесины) также дрожжи видов Lipomyces lipoferus и Rhodotorula gracilis. У этих видов дрожжей липогенез сильно зависит от условий культивирования. Эти продуценты накапливают значительные количества (до 70 %) триацилглицеридов.

Микроскопические грибы пока не получили большого распространения в получении липидов, хотя жир грибов по своему составу близок к

1 ... 42 43 44 45 46 47 48 49 50 ... 150
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности