chitay-knigi.com » Домоводство » Микрокосм. E. coli и новая наука о жизни - Карл Циммер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 84
Перейти на страницу:

Но эволюция E. coli — это не дорога в один конец, на которой безвредная бактерия неизбежно превращается в смертельно опасного паразита. Некоторые из самых смирных штаммов E. coli, наоборот, произошли от ее патогенных разновидностей. Один из таких штаммов — АО 34/86 — защищает хозяина от бактерий, вызывающих диарею. Врачи иногда прописывают его недоношенным детям, чтобы защитить их недоразвитый кишечник. В 2005 г. ученые опубликовали расшифровку генома штамма АО 34/86. Они обнаружили гены, отвечающие за синтез убивающих клетку факторов, белков, вызывающих кровотечения, и других видов оружия, которые активно используют 0157: Н7 и прочие смертельно опасные штаммы. Судя по всему, АО 34/86 использует все свои темные возможности нам во благо: он основывает колонии в кишечнике младенца и таким образом лишает болезнетворные штаммы возможности найти место для поселения. Мы, конечно, можем попытаться разграничить природное разнообразие и четко разделить E. coli на убийц и защитников. Но эволюция не склонна к однозначности и всегда размывает границы.

Одна жизнь, множество хозяев

Еще один пример размывания границ — тот рубеж, который пролегает между E. coli и инфицирующим ее вирусом. Эта граница кажется очевидной, когда видишь, как из лопнувшей оболочки E. coli выходят наружу сотни вирусов, чтобы заразить нового хозяина. В такой ситуации легко думать о них как о двух отдельных организмах. Но взаимоотношения E. coli с вирусами гораздо сложнее и многограннее. К примеру, умеренные бактериофаги могут, по крайней мере на время, встраиваться в хромосому микроорганизма. Но и здесь вирус еще держится за собственную идентичность. Он способен ощутить, когда хозяин начинает плохо себя чувствовать, и как раз в этот момент возвращается к привычной форме вируса- убийцы. А есть вирусы, которые тащат с собой груз генов, приносящих пользу хозяину, но бесполезных для них самих. Когда они встраиваются в геном E. coli, трудно определить, где кончается геном вируса и начинается геном хозяина. Некоторые вирусы оказываются пойманными в ловушку, навеки встроившись в геном E. coli благодаря мутациям, которые лишают их способности собирать новые вирусные частицы. Со временем мутационный процесс может привести к утрате большей части вирусной ДНК. Нетронутыми остаются лишь те гены, которые приносят хозяину пользу. Теперь с вирусами их связывает только происхождение.

Чтобы разобраться в непростых отношениях между E. coli и ее вирусами, полезно на время отказаться от обычной для человека позиции «я и все остальные» и подумать о жизни как о сложном и запутанном потоке генов. Гены, переносимые вирусом, в любой конкретный момент представляют собой сообщество эволюционных партнеров, чья совместная приспособленность выше, чем приспособленность любого из них в отдельности. Некоторые из этих сообществ благоденствуют лишь за счет того, что внедряются в хозяина и используют его для воспроизводства себе подобных. Но иногда случается, что интересы вируса и E. coli совпадают. К примеру, гены вируса будут тиражироваться успешнее, если вирус не станет убивать своего хозяина. Некоторые вирусы превращаются в своего рода странствующих добрых самаритян, приносящих с собой множество генов, полезных для хозяина, а в конечном итоге и для них самих. Путешествуя от одного биологического вида к другому, они испытывают все новые комбинации генов, и отбор подхватывает те из них, которые оказываются наиболее благоприятными для хозяина.

Отношения между вирусом и бактерией могут быть достаточно сложными; отношения вообще сложная штука. Так, вирус может быть одновременно полезным и вредным для своего хозяина — E. coli. К примеру, E. coli 0157: Н7 несет в себе гены вируса, в числе которых и ген, отвечающий за производство токсина. Возможно, бактерии получают пользу от производства токсина, поскольку он помогает защищаться от хищников; но для конкретных микроорганизмов, занимающихся его производством, ситуация выглядит далеко не так радужно. Вирус вынуждает микроорганизм производить одновременно и молекулы токсина, и новые копии самого вируса, и E. coli делает это, пока не лопнет.

Решение о производстве токсина принимает вирус, а не E. coli. Бактерия вырабатывает токсин в моменты стрессовых воздействий — именно поэтому врачи, как правило, при заболевании, вызванном E. coli 0157: Н7, не прописывают антибиотики. Лекарства стимулируют выход вирусов из клеток хозяина и тем самым превращают болезнь, которая могла ограничиться приступом кровавого поноса, в потенциально смертельное заболевание с отказом некоторых органов. Тот факт, что вирус, размножаясь, убивает хозяина, пробуждает в нас едва ли не жалость к E. coli 0157: Н7. Бактерия — точно такая же жертва вируса, как и человек. Даже после убийства первоначального хозяина вирусы продолжают наносить E. coli вред. Заражая обитающие в нашем кишечнике безвредные E. coli, они превращают их в фабрики по производству новых вирусов — и, разумеется, токсинов. Выработка токсинов после нападения вирусов на безвредные бактерии может возрасти тысячекратно.

Другие вирусы используют для выживания иные стратегии, не менее жестокие по отношению к E. coli. Вместо того чтобы убивать хозяина, они берут его в заложники. Один из таких вирусов — Р1 — несет ген, отвечающий за производство рестрикционного фермента, или рестриктазы. Рестриктаза находит в молекуле ДНК определенный участок, прикрепляется к нему, а затем разрезает ДНК в этом месте. Тем не менее вирус Р1 обычно не убивает E. coli. Для этого он синтезирует второй белок, который защищает бактерию от рестриктазы. Этот белок — ДНК — модифицирующий фермент метилаза — метилирует ДНК на тех же участках, где работает рестриктаза.

Почему вирус Р1 производит одновременно токсин и антидот? Как и многие вирусы, он встроен в плазмиды E. coli. Всякий раз, когда инфицированный микроорганизм делится, он создает новые копии и собственной ДНК, и плазмид, несущих на себе Р1; их наследуют оба потомка. Иногда, однако, происходит ошибка, и все плазмиды достаются только одному из них. Другая, свободная от вирусных плазмид бактерия, могла бы победить в соревновании за выживание, потому что ей не приходится тратить дополнительную энергию на копирование вирусной ДНК и производство его белков. Поэтому вирус Р1 убивает ее, хотя в бактерии его и нет. Но линия E. coli, однажды инфицированная вирусом Р1, уже не может без него жить и вот почему. Бактерия, которой не досталось плазмид, не получает вместе с ними и ДНК вируса, но какое‑то количество готовых молекул рестрикционного и модифицирующего ферментов при делении родителя в него все же попадает. Молекулы рестриктазы прочны и долговечны, в то время как метилаза живет недолго. Когда E. coli утрачивает вирус, ее ДНК постепенно деметилируется. В результате ДНК бактерии становится уязвимой для рестриктазы, и та убивает микроорганизм. Иными словами, если вирус Р1 инфицирует E. coli, жить без него она уже не способна.

Гены, отвечающие за производство рестриктазы и метилазы, имеются не только у Р1. В хромосоме E. coli их множество. Генетик Итидзо Кобаяси из Токийского университета утверждает, что все они берут начало от генов, которые, по сути, держат своего носителя в заложниках. Кобаяси указывает также, что рестриктазы и метилазы, возможно, позволяют вирусам побеждать другие вирусы, которые пытаются захватить их хозяина. Новый вирус, только что проникший в клетку E. coli, не имеет пока защиты, которой давно обзавелись резидентные вирусы, и открыт для атак рестриктаз. Действительно, рестриктазы и метилазы могли возникнуть как средство обеспечить безбедную жизнь паразиту, но некоторые из них, очевидно, давно уже перешли под управление хозяина, то есть E. coli. Убивая проникающие извне вирусы, они превратились в своего рода примитивную иммунную систему бактерии.

1 ... 42 43 44 45 46 47 48 49 50 ... 84
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности