Шрифт:
Интервал:
Закладка:
Но есть еще более действенный способ вычисления дисперсии, который можно применить к любой непрерывной переменной величине. Это среднеквадратическое отклонение, оно же СКО, обозначаемое греческой буквой σ (сигма). Среднеквадратическое отклонение — это квадратный корень из дисперсии переменной величины. В принципе, среднеквадратическое отклонение не слишком отличается от среднего, но обладает кое-какими чрезвычайно полезными свойствами.
На кривой нормального распределения на рисунке 2 отмечены среднеквадратические отклонения. Примерно 68% значений переменной находятся в пределах от +σ до -σ (от плюс одного до минус одного стандартного отклонения от среднего значения выборки). Возьмем, например, результаты теста на IQ. В большинстве IQ-тестов средним значением принято считать 100 баллов, а среднеквадратическим отклонением — 15. То есть человек с уровнем IQ, равным 115, является среднеквадратическим отклонением выше среднего значения. Расстояние между средним значением и среднеквадратическим отклонением выше среднего довольно велико. Можно ожидать, что человек с IQ, равным 115 баллам, окончит университет и даже займется научной работой. Люди с таким уровнем IQ обычно получают высшее образование и становятся специалистами в какой-то области, менеджерами или инженерами. Люди с уровнем IQ, равным 100 баллам, чаще получают среднее специальное образование или вообще нигде не учатся после школы и становятся продавцами, секретарями или рабочими.
Еще один набор полезных фактов о среднеквадратическом отклонении касается соотношения между процентилями (сотыми частями распределения, выстроенными в ряд по их величине) и среднеквадратическими отклонениями. Примерно 83% наблюдаемых случаев имеют менее одного среднеквадратичного отклонения, превышающего среднее значение. Наблюдение с одним СКО от среднего значения находится в 84% распределения. Оставшиеся 16% наблюдаемых случаев превышают 84 процентиля. Почти 98% количества всех наблюдений содержат менее двух СКО выше среднего значения. Ровно два СКО от среднего значения входят в 98%. Всего 2% оставшихся наблюдаемых случаев превышают это значение. Почти все наблюдения окажутся между тремя СКО ниже среднего значения и тремя СКО выше среднего значения.
Знание соотношения между среднеквадратическими отклонениями и процентным выражением помогает судить о большинстве непрерывных переменных величин, с которыми мы сталкиваемся. Например, расчет среднеквадратического отклонения часто используется в финансовой сфере. Среднеквадратическое отклонение уровня дохода на инвестиции определяет уровень нестабильности инвестиций. Если пакет акций в среднем приносит 4% прибыли за последние десять лет с среднеквадратическим отклонением 3%, это означает, что наиболее вероятным предположением будет то, что 68% времени в будущем уровень прибыли составит от 1 до 7% и 96% времени доход будет больше, чем -2%, и меньше 10%. Это довольно стабильно. Такой доход не сделает вас богачом, но и нищим вы тоже не будете. Если среднеквадратическое отклонение равно восьми, это означает, что 68% времени уровень дохода будет между -4 и +12%. Этот пакет акций может действительно принести хорошую прибыль. 16% времени вы будете получать более чем +12% прибыли. В то же время, 16% времени вы будете терять более чем 4%. Это весьма нестабильно, 2% времени вы будете зарабатывать более чем 20%. Можно разбогатеть, а можно и остаться без гроша.
Так называемые устойчивые акции обладают высокой стабильностью как относительно дивидендов, так и относительно цены. Они могут приносить 2, 3, 4% прибыли каждый год и, вероятно, не слишком поднимутся в цене при растущем рынке, но также и не слишком упадут в цене в ситуации, когда цены на рынке снижаются. Так называемые акции роста обычно приносят прибыль с более высоким среднеквадратическим отклонением, что означает более высокий потенциал роста наряду со значительно более высоким риском падения курса.
Финансовые консультанты обычно советуют молодым клиентам выбирать акции роста и продержаться в те периоды, когда цены падают, потому что в долгосрочной перспективе акции роста все-таки растут — хотя периоды падения могут быть утомительно долгими. Клиентам постарше консультанты чаще советуют выбирать более устойчивые акции, чтобы момент выхода на пенсию не совпал с периодом падения курса.
Что интересно — все, что вы только что прочитали про нормальное распределение, существует независимо от формы нормального распределения, которая лишь иногда похожа на кривую распределения. В разных случаях это разные кривые эксцесса. Это может быть островершинная кривая с положительным эксцессом, напоминающая ракету из комиксов 1930-х гг. с острой вершиной и короткими хвостами. Это может быть плосковершинная кривая с отрицательным эксцессом, напоминающая удава, проглотившего слона, с низкими вершинами и низкими хвостами. Тем не менее для обоих распределений 68% всех значений находятся в пределах от плюс до минус одного среднеквадратического отклонения.
Островершинная кривая с положительным эксцессом
Плосковершинная кривая с отрицательным эксцессом
Но вернемся к вопросу о том, почему Кэтрин обычно разочаровывается, вернувшись в ресторан, где ее отлично кормили в первый раз. Мы пришли к выводу, что ее оценка ресторанных блюд является переменной величиной: она варьирует, скажем, от «отвратительно» (1-й процентиль) до «божественно» (99-й процентиль). Предположим, что великолепные блюда относятся приблизительно к 95-му процентилю или даже выше — то есть это лучше 94% блюд, которые ей подают в ресторанах. А теперь спросите себя, вспомнив собственный опыт, — что кажется вам более вероятным: что каждое блюдо, которое вы съедите в ресторане, где никогда не бывали раньше, окажется великолепным или что великолепными окажутся только некоторые из них? Если вы полагаете, что не следует ожидать, что все блюда будут великолепными, но вам повезло и в первый раз в ресторане вам приносят именно такое блюдо, то ожидаемое значение второй (следующей) величины должно быть как минимум немного ниже, чем первой.
Опыт Кэтрин с посещением ресторанов во второй раз можно представить как регрессию к среднему значению. Если впечатления от блюд, попробованных в ресторанах, распределяются нормально, то предельные (крайние) значения по определению маловероятны, поэтому случай данного вида, следующий за предельным случаем (крайностью), как правило, оказывается менее предельным. Предельные случаи регрессируют до менее предельных.