chitay-knigi.com » Домоводство » Как не ошибаться. Сила математического мышления - Джордан Элленберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 160
Перейти на страницу:

Вальд задался вопросом: где находятся недостающие пробоины? Именно в этом проявилась его проницательность – в простоте поставленной задачи. Речь шла о тех самых отверстиях от поражающих средств – пробоинах, которые покрывали бы кожух двигателя, если повреждения были бы распределены равномерно по всему самолету. В ответе на свой вопрос Вальд не сомневался ни на йоту. Причина, почему на двигателях уцелевших самолетах было меньше повреждений, только одна: в случае прямого попадания в двигатель самолет просто не возвращался из боя. Однако многие самолеты прилетали на базу с фюзеляжем, похожим на швейцарский сыр, – убедительный довод в пользу того, что корпус можно (а значит, и нужно) оставить без дополнительной брони. В военном госпитале вы встретите гораздо больше раненных не в грудь, а в ноги. Но причина не в том, что люди не получают ранений в грудь – просто после таких ранений они, как правило, не выживают.

Вот старый математический прием, который вносит полную ясность в картину происходящего: присвоить некоторым переменным значение 0. В данном случае в качестве такой переменной выступает вероятность того, что самолет, получивший прямое попадание в двигатель, может остаться в воздухе. Нулевое значение этой вероятности означает, что единственное попадание в двигатель неизбежно приводит к падению самолета. Как выглядели бы данные о возвращающихся самолетах в таком случае? У вас есть самолеты, вернувшиеся с дырами от пуль в крыльях, фюзеляже, носовой части, но нет ни одного самолета с пробоинами в двигателе. Военный аналитик может объяснить этот факт двумя причинами: либо немецкие орудия попадают во все части самолета, кроме одной, либо двигатель – это самое уязвимое место. Обе причины объясняют данные о повреждениях на уцелевших самолетах, но второе объяснение гораздо логичнее. Стало быть, броню следует укреплять там, где нет пулевых отверстий.

Выводы Вальда были сразу приняты к сведению, более того, ими руководствовались во время военных действий в Корее и во Вьетнаме{7}. Я не могу точно сказать, сколько американских самолетов спасли его рекомендации, хотя это наверняка известно тем преемникам SRG в современных вооруженных силах, которые занимаются сбором и обработкой данных. Высшие чины американских военных ведомств всегда отдавали себе отчет, что страны побеждают в войнах не потому, что они храбрее противника или более независимы или им чуть больше благоволит Бог. Как правило, победителем становится тот, у кого сбивают на 5 % меньше самолетов, или кто использует на 5 % меньше топлива, или кто обеспечивает пехоте на 5 % более качественное питание[5] при 95 % затрат. О таких вещах не принято говорить в военных фильмах, но именно к ним сводятся сами войны. И на каждом этапе этого пути присутствует математика.

* * *

Почему Абрахам Вальд увидел то, чего не смогли увидеть офицеры, обладающие более профессиональными знаниями и пониманием сути воздушного боя? Причина в аналитическом складе ума Вальда – так называемом математическом мышлении. Математик всегда ставит такие вопросы: «Из каких предположений вы исходите? Обоснованы ли эти предположения?»[6] Порой это вызывает раздражение. Однако такой подход может быть весьма продуктивным. В случае с авиационной броней офицеры, сами того не замечая, исходили из предположения, что вернувшиеся самолеты представляют собой случайную выборку всех самолетов. Если действительно так и было бы, мы могли бы, проанализировав распределение пробоин только на уцелевших самолетах, сделать вывод об их распределении на всех машинах. Но, как только вы осознаете, что в своих расчетах опираетесь на такое предположение, вам сразу станет понятно, насколько оно ошибочно: нет никаких оснований ожидать равной вероятности выживания всех самолетов независимо от того, в какую часть машины попадает огнестрельное оружие. Мы вернемся к этой теме в главе пятнадцатой, где в более точных математических терминах выразим мысль о существовании зависимости между уровнем выживаемости самолетов в бою и местоположением пробоин.

Еще одно неоспоримое достоинство Вальда – его особая склонность к абстракции. Вулфовиц, учившийся у Вальда в Колумбийском университете, писал, что ученый отдавал предпочтение задачам «самого абстрактного рода», а также что он «всегда охотно говорил о математике, но был безразличен к ее популяризации и практическому применению»{8}.

Особенности характера Вальда действительно мешали ему сосредоточиться на прикладных задачах. Ему было в тягость разбираться в деталях конструкции самолетов и оружия, поэтому он анализировал математические основы происходящего, связывая все в единое целое. Порой такой подход приводит к игнорированию действительно важных аспектов проблемы. Правда, он дает возможность увидеть общую схему, лежащую в основе различных задач, но на поверхности выглядит совсем по-другому. Это позволяет обрести весомый опыт даже в тех областях, в которых на первый взгляд у вас не может быть никаких практических знаний.

Глубинную структуру задачи с пробоинами в авиационной броне математики обозначают термином «систематическая ошибка выжившего». Такая погрешность часто возникает в самых разных ситуациях[7]. Зная о существовании систематической ошибки выжившего – как знал о ней Абрахам Вальд, – вы будете готовы к тому, чтобы обнаружить ее, где бы она ни скрывалась.

Возьмем в качестве примера взаимные фонды[8]. Оценка их эффективности – это именно та область, в которой вам хотелось бы не допустить ни малейшей ошибки. Изменение годового темпа роста стоимости активов фонда на 1 % может составить разницу между ценным инвестиционным активом и убыточным инвестиционным инструментом. На первый взгляд может показаться, что к первому типу инвестиционных активов относятся фонды категории Large Blend (смешанные фонды акций крупных компаний) по версии агентства Моrningstar, показывающие примерно такой же рост, что и индекс S&P 500. За период с 1995 по 2004 год их рост составил 178,4 %, в среднем по целых 10,8 % в год[9]. Похоже, если в то время вы могли бы вложить деньги в те фонды, это принесло бы вам большую прибыль – не так ли?

1 2 3 4 5 6 7 8 9 10 ... 160
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности