Шрифт:
Интервал:
Закладка:
1.1 Как и почему мы различаем цвета?
Когда свет падает на объект, он обрушивается на огромное количество молекул, из которых состоит этот объект. Поскольку свет и электромагнитное излучение также считаются частицами, ученые дали имя фундаментальной частице электромагнитного излучения – фотон. Когда фотон взаимодействует с чем-то, для него есть два варианта: он может быть поглощен или отражен. Поэтому, когда свет, состоящий из фотонов с разной длиной волн, сталкивается с объектом, происходит взаимодействие, которое можно разложить на миллионы и миллионы всякого рода аспектов. Некоторые молекулы будут отражать фотоны, другие – поглощать их. Отраженные фотоны попадают нам в глаза, и мы видим цвет предмета. Например, ткани растений содержат молекулы хлорофилла. Благодаря своей форме (напоминающей верхнюю часть молота Тора) и своему размеру они поглощают свет с длиной волн 430 и 662 нанометра. Эти две волны дают синий и красный цвет соответственно. Хлорофилл не поглощает свет с длиной волн в диапазоне от 430 до 662 нанометра, где находится зеленый цвет и видимая для нас часть цветового спектра. Если на объект, способный поглотить волны разной длины, направить широкий спектр света, то он поглотит их все. То есть не будет фотонов видимого спектра, которые отразятся от объекта, и он останется бесцветным. Цвета, которые мы можем различить, – это лишь результат отражения частиц света с разной длиной волн от предметов в направлении наших глаз.
Рис. 1.1. Электромагнитный спектр (диапазон длин волн фотонов, воздействующих на нас в природе). Диапазон световых волн – более восемнадцати порядков. Видимая часть спектра представлена всего лишь небольшой полоской между 400 и 700 нанометрами
Мы не видим весь спектр света – скажем, в ультрафиолетовом и инфракрасном излучении, – потому что наши глаза в результате эволюции стали различать только узкий диапазон волн. Хотя для большинства организмов основной источник электромагнитного излучения – это Солнце, многие другие источники генерируют фотоны, которые и составляют световые волны. Рентгеновские лучи – пример света, созданного эмиссией (испусканием) электронов из атомов. Наши глаза не видят рентгеновские лучи, однако мы придумали отличный способ использовать фотографирование для их выявления.
Люди постоянно пытаются найти способ выйти за пределы своих естественных границ и расширить диапазон не только зрения, но и других чувств. Это важный и непрерывный процесс. Другие источники длины волны включают биолюминесценцию – форму света, которая в видимом спектре излучается живыми организмами, производящими, а не отражающими свет.
Другая составляющая хаоса – это молекулы в воздухе, а также в твердых телах, газах и жидкостях, с которыми мы контактируем. Эти молекулы состоят из атомов, которые самыми различными путями формируют сложные соединения и создают неимоверное количество маленьких объектов, плавающих в воздухе или в том, что мы глотаем. Некоторые из этих молекул совсем крошечные, но все они имеют отличительные формы и размеры и могут быть достоверно распознаны посредством механизма «ключ-к-замку», который реализуется белками клеточной мембраны. Части этих белков работают как замки, расположенные с внешней стороны клетки. Когда появляется небольшая молекула, которая подходит к замку как ключ, она образует комплекс с белками клеточной мембраны и меняет их форму. Это инициирует ряд реакций внутри клетки, и вызванная цепная реакция меняет ее состояние. То, что происходит в клетке, называется трансдукцией или передачей сигнала, и этот процесс лежит в основе работы нервной системы и реакции одноклеточных организмов на внешние раздражители. В этих маленьких молекулах, которыми наполнена наша среда обитания, заложена суть того, как мы и другие организмы воспринимаем вкусы и запахи.
Иногда перемещение воздуха вокруг нас (или воды, если мы плаваем) вызывает шквал ощущений. Вспомните, как заметно чувствуется движение воздуха, когда вы подносите руки к сушилке в общественном туалете. И невозможно забыть (кто угодно может это подтвердить) то чувство, когда мы ударяемся головой обо что-то твердое, например о притолоку подвала. А это значит, что, когда наша кожа вступает в контакт с газообразным, жидким или твердым объектом, у нас возникает механическая реакция. Организмы должны знать, где именно они находятся в пространстве, поэтому многие формы жизни разработали способы отслеживания своего положения, и все они связаны с чувством равновесия. Хаос воздействия внешней среды, который вызывает потребность в равновесии, возникает под действием силы тяжести и из-за движения организма. К другим переменным факторам относятся температура, магнитное и электростатическое поля.
1.2 Как устроен звук?
Звук – это раздражитель, воздействующий на наши органы чувств посредством волн определенной длины, передающихся в воде, воздухе, гелиевой и других средах, и воспринимаемый как вибрация. Звуковые волны имеют тенденцию вытеснять воздух и частицы, летающие в нем. Разные источники звука испускают волны различной длины, что обеспечивает существование в природе широкого звукового диапазона. Как и в случае со светом, в процессе эволюции живущие на планете организмы научились различать узкий спектр звуковых волн. Звуковые волны расходятся циклически, переходя от одного пика волны к другому. Чем меньше количество циклов в единицу времени, тем ниже звук, а чем больше – тем звук выше. Единица частоты звука называется герц, и она измеряет количество циклов звуковой волны в секунду. Человеческое ухо различает довольно широкий диапазон звуков – от 20 до 20 000 Гц, а другие животные, обитающие на нашей планете, способны уловить и более низкие, и более высокие звуки.
Специализированные клетки организма обнаруживают сенсорную информацию в окружающей среде. Но как они это делают? Механизм одноклеточных организмов сильно отличается от механизма таких многоклеточных, как растения и высшие животные. У высших животных мозг обрабатывает информацию, полученную от органов чувств.
Даже одноклеточные, которых мы называем бактериями и археями, чувствуют мир вокруг них. Это происходит потому, что среда постоянно контактирует со всем тем, что окружает эти крошечные организмы. Чтобы убедиться в наличии чувств у бактерий, можно посмотреть видео, как бактерия-хищник поедает свою жертву. Когда хищник начинает уничтожать добычу, поразительно, как быстро и избирательно он это делает. Это наглядная иллюстрация принципа: «Ты – мой вид, я тебя не трону… а ты – нет, тебя можно съесть». Еще больше удивляют видеоролики, где одноклеточные эукариоты преследуют и поедают другие одноклеточные организмы. Но самым сильным впечатлением для меня стало видео о том, как бактерии «чувствуют» внешний мир, показывающее «линейные танцы» микробов, реагирующих на магнитное поле. Позвольте мне объяснить, как и почему они это делают.
Некоторые бактерии умеют считать, и эта способность требует, чтобы считающая клетка чувствовала свое окружение. Чувство кворума – одно из самых примитивных способов, позволяющих клеткам чувствовать и общаться друг с другом. Все живое на Земле использует молекулы для общения. И механизм восприятия кворума, и чувства так называемых более сложных организмов основаны на межмолекулярных взаимодействиях. У одноклеточных организмов есть молекулярная система индикации света, и некоторые микробы (как и более сложные животные) чувствуют магнитные поля. Магнитотактические бактерии ориентируются по магнитному полю Земли, потому что их клеточные мембраны содержат мелкие частицы сульфида железа, или магнетита (магнитосомы), заключенные в мембраноподобную органеллу, и выстраиваются в линию в этой оболочке. Но для линейного танца этим крошечным частицам недостаточно лишь встать в строй. Выровненные магнитосомы внутри бактерий располагаются параллельно, придавая бактериям характеристики магнитного диполя и превращая их в крошечные магниты с магнитными полюсами. Многие виды бактерий являются магнитотактическими. Этот феномен, по-видимому, возник только единожды в эволюционной истории микробов, поскольку большинство магнитотактических бактерий относится к типу протеобактерий и к двум другим близкородственным типам. Кроме того, гены, которые модулируют строительство этой органеллы, сгруппированы в геномах магнитотактических бактерий, что приводит к двум интересным аспектам эволюции этого явления.