chitay-knigi.com » Домоводство » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 95
Перейти на страницу:

В 2010 году предприниматель из Кремниевой долины Майкл Хартл усилил настроения против числа π, окрестив отношение длины окружности к радиусу греческой буквой τ («тау»). Тау равно двум пи, поскольку диаметр окружности в два раза больше радиуса. Другими словами, число τ равно:

τ = 2π = 6,283185307179586476925286766…

Как и в случае π, количество десятичных цифр в этом числе бесконечно и не подчиняется ни одной известной закономерности.

В «Манифесте о числе тау» (Tau Manifesto) Хартл призывает молодых математиков заменить π на τ в своей работе[93]. Для начала во всех научных трудах можно было бы делать такое вступление: «Для удобства примем, что τ = 2π». Хартл предупреждает, что борьба будет долгой, поскольку противник достаточно силен благодаря столетиям пропаганды. «Хотя некоторые условные обозначения неуместны, отменить их фактически невозможно, — пишет он. — [Однако] переход от π к τ может… произойти постепенно; в отличие от переопределения, это не должно происходить сразу».

Символ τ уместен втройне[94]. Он похож на π с одной ногой, так что если рассматривать эти символы в качестве дробей, в которых количество ног — это знаменатель (число под линией дроби), то τ действительно равно двойному π, поскольку величина, деленная на 1, равна удвоенной величине, деленной на два. При этом τ можно рассматривать как сокращение от turn («поворот, перемена»), точно так же как «пи» первоначально было сокращением от слова periphery (греч. «окружность»). А еще подобно тому как обозначение «пи» вызывает вкусные ассоциации со словом pie («пирог» — блюдо, которое чаще всего готовят в форме круга), «тау» ассоциируется со словом «Tao» («Дао») — духовный путь, один из важнейших элементов китайской философии, обозначаемый символомКрасота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры и выражающий гармонию и движение в пределах круга.

В «Манифесте о числе тау» в непринужденной форме говорится о серьезных вещах. Сущность окружности состоит в повороте радиуса, а не в ее ширине. На самом деле динамические свойства окружности, примером которых служит колесо, — это базовые механические принципы, лежащие в основе цивилизации. В этой главе вы узнаете, что три самых важных свойства окружности — это вращение, вращение и еще раз вращение.

Так давайте начнем.

Траектория движения точки на катящемся колесе не похожа, пожалуй, ни на одну кривую из увиденных нами ранее. Во всяком случае, так воспринял эту кривую Галилей, который назвал ее циклоидой и был первым, кто тщательно ее изучил. Вполне естественно, что Галилея, отца современной математики, очень интересовали кривые, образующиеся в результате механического движения. Хоть колесо катится и плавно, но все же создает кривую с острыми выступами (перегибами) в тех местах, где меняет направление. Каждая арка такой кривой соответствует одному полному обороту колеса, представляющему собой завершенный цикл. Циклоида напоминает скорее не кривую, а череду спящих черепах.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Циклоида

На представленном выше рисунке обозначены позиции точки на каждой четверти оборота колеса; здесь отчетливо видно, что точка проходит большее расстояние, находясь в верхней половине колеса. В процессе перемещения колесо совершает два типа движений: горизонтальное движение по поверхности земли и вращательное движение вокруг центра колеса, причем движения обоих типов по-разному сочетаются друг с другом на протяжении цикла. Если колесо вращается с постоянной скоростью, точка на нем достигает максимальной скорости по отношению к земле на вершине циклоиды, а минимальной — в точке перегиба, где скорость становится равной нулю и сразу же снова начинает увеличиваться. Поразительно то, что у любого движущегося колеса (даже колеса автомобиля, мчащегося со скоростью 200 миль в час) точка контакта с землей неподвижна. Художники знают, что верхняя половина движущегося колеса перемещается быстрее, чем нижняя, поэтому рисуют верхнюю часть расплывчатой, а нижнюю — более четкой. Точно так же спицы колеса движущегося велосипеда видны ближе к земле, где они вращаются достаточно медленно, чтобы их можно было заметить.

Колесо поезда состоит из двух частей: диска, который опирается на рельсы, и реборды, или обода, провисающего сбоку. Точка на ободе описывает кривую, образующую обратную петлю, находясь ниже уровня рельсов, как показано на рисунке. Следовательно, у колес всех поездов есть момент, когда колесо движется в направлении, противоположном движению поезда.

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Траектория движения точки на колесе поезда

За всю историю математики ни одна кривая не была объектом столь пристального внимания, как циклоида в XVII столетии. Ее форма была так изящна, а споры между ее поклонниками — настолько ожесточенными, что она заслужила репутацию «Елены Прекрасной геометров»[95]. Галилей, самый главный поклонник этой кривой, использовал прикладные методы в процессе ее изучения. Он вырезал пластину в виде циклоиды из куска материала и вычислил, что она в π раз тяжелее, чем пластина из того же материала, вырезанная в форме образующей окружности. Из этого Галилей сделал вывод, что площадь под кривой в π раз больше площади круга. Он получил очень близкий, но все же неправильный результат. Эта площадь больше ровно в три раза, что доказал впоследствии французский математик Жиль Персонн Роберваль.

Роберваль (1602–1675) доказал много теорем о циклоиде, но не опубликовал ни одной из них. Для того чтобы сохранить место профессора математики в самом престижном учебном заведении страны Коллеж де Франс, он должен был предоставлять лучшее решение задачи, которая публично объявлялась один раз в три года. Поэтому у Роберваля не было стимула делиться своими результатами, поскольку ими могли бы воспользоваться потенциальные соперники, внимательно следившие за его работой. Должность Роберваля обеспечивала ему престиж и деньги, но лишила собственного научного наследия. Его можно отнести к числу великих французских математиков, о которых помнят меньше всего. Известно, что Роберваль был очень вспыльчив и расстраивался, когда другие ученые обнародовали результаты, которые он уже давно получил. Когда в 1644 году друг Роберваля, итальянец Эванджелиста Торричелли, опубликовал свой первый труд о циклоиде, разъяренный Роберваль отправил ему письмо с обвинениями в плагиате. Торричелли умер три года спустя от тифа, но ходили слухи, что его смерть связана с измучившими его угрызениями совести из-за обвинений в подобном бесчестии.

1 ... 32 33 34 35 36 37 38 39 40 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности