chitay-knigi.com » Домоводство » Тайны квантового мира. О парадоксальности пространства и времени - Олег Фейгин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 83
Перейти на страницу:

Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет равных себе в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений, без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности.

Следовательно, если лучшая теория, имеющаяся в распоряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссылалась бы на параллельные вселенные, чтобы объяснить то, что мы видим».

Ну а подытожить головокружительное жизнеописание нашего мира поможет еще один отрывок из «Краткой истории времени от Большого взрыва до черных дыр» С. Хокинга:

«Попытки построить модель Вселенной, в которой множество разных начальных конфигураций могло бы развиться во что-нибудь вроде нашей нынешней Вселенной, привели Алана Гута, ученого из Массачусетского технологического института, к предположению о том, что ранняя Вселенная пережила период очень быстрого расширения. Это расширение называют раздуванием, подразумевая, что какое-то время расширение Вселенной происходило со все возрастающей скоростью, а не с убывающей, как сейчас. Гут рассчитал, что радиус Вселенной увеличивался в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз всего за крошечную долю секунды.

Гут высказал предположение, что Вселенная возникла в результате Большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась, и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход, и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода — замерзание воды при охлаждении. Жидкое состояние воды симметрично, то есть вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается.

Если охлаждать воду очень осторожно, то ее можно „переохладить“, то есть охладить ниже точки замерзания (0 град. Цельсия) без образования льда. Гут предположил, что Вселенная могла себя вести похожим образом: ее температура могла упасть ниже критического значения без нарушения симметрии сил. Если бы это произошло, то Вселенная оказалась бы в нестабильном состоянии с энергией, превышающей ту, которую она имела бы при нарушении симметрии. Можно показать, что эта особая дополнительная энергия производит антигравитационное действие аналогично космологической постоянной, которую Эйнштейн ввел в общую теорию относительности, пытаясь построить статическую модель Вселенной. Поскольку, как и в горячей модели Большого взрыва, Вселенная уже вращалась, отталкивание, вносимое космологической постоянной, заставило бы Вселенную расширяться с все возрастающей скоростью. Даже в тех областях, где число частиц вещества превышало среднее значение, гравитационное притяжение материи было бы меньше отталкивания, вносимого эффективной космологической постоянной. Следовательно, такие области должны были тоже расширяться с ускорением, характерным для модели раздувающейся Вселенной. По мере расширения частицы материи расходились бы все дальше друг от друга, и в конце концов расширяющаяся Вселенная оказалась бы почти без частиц, но все еще в переохлажденном состоянии. В результате расширения все неоднородности во Вселенной должны были просто сгладиться, как разглаживаются при надувании морщины на резиновом шарике. Следовательно, нынешнее гладкое и однородное состояние Вселенной могло развиться из большого числа разных неоднородных начальных состояний».

Разумеется, вполне естественно было бы считать, что в нашем ускоренно расширяющемся мире свету хватило бы времени для перехода из одной области ранней Вселенной в другую. В то же время расширением Вселенной можно было бы объяснить, почему в ней так много вещества и откуда оно взялось. Здесь просто надо принять как должное, что вокруг нас в диалектическом круговороте материи и энергии постоянно происходят взаимные переходы этих двух основных физических сущностей Мироздания. Вот и в микромире частицы могут рождаться в переходах: энергия — частица — античастица. При этом любопытно, как современная физика объясняет временно возникающий энергетический дефицит. В частности, Хокинг рассуждает так:

«Полная энергия Вселенной в точности равна нулю. Вещество во Вселенной образовано из положительной энергии. Но все вещество само себя притягивает под действием гравитации. Два близко расположенных куска вещества обладают меньшей энергией, чем те же два куска, находящиеся далеко друг от друга, потому что для разнесения их в стороны нужно затратить энергию на преодоление гравитационной силы, стремящейся их соединить. Следовательно, энергия гравитационного ноля в каком-то смысле отрицательна. Можно сказать, что в случае Вселенной, примерно однородной в пространстве, эта отрицательная гравитационная энергия в точности компенсирует положительную энергию, связанную с веществом. Поэтому полная энергия Вселенной равна нулю».

Так ученый постепенно подводит нас к мысли о том, что «поскольку дважды нуль тоже нуль, количество положительной энергии вещества во Вселенной может удвоиться одновременно с удвоением отрицательной гравитационной энергии; закон сохранения энергии при этом не нарушится. Такого не бывает при нормальном расширении Вселенной, в которой плотность энергии вещества уменьшается по мере увеличения размеров Вселенной. Но именно так происходит при раздувании, потому что в этом случае Вселенная увеличивается, а плотность энергии переохлажденного состояния остается постоянной: когда размеры Вселенной удвоятся, положительная энергия вещества и отрицательная гравитационная энергия тоже удвоятся, в результате чего полная энергия останется равной нулю. В фазе раздувания размеры Вселенной очень сильно возрастают. Следовательно, общее количество энергии, за счет которой могут образовываться частицы, тоже сильно увеличивается. Гут по этому поводу заметил: „Говорят, что не бывает скатерти-самобранки. А не вечная ли самобранка сама Вселенная?“

Сейчас Вселенная расширяется без раздувания… Затем Вселенная опять начнет расширяться и охлаждаться, так же как в горячей модели Большого взрыва, но теперь мы уже сможем объяснить, почему скорость ее расширения в точности равна критической и почему разные области Вселенной имеют одинаковую температуру».

Тайны квантового мира. О парадоксальности пространства и времени

Стивен Хокинг в невесомости

ГЛАВА СЕДЬМАЯ ТЕОРИЯ ТЕОРИЙ

Самое, пожалуй, удивительное в современной физике — это неожиданная связь между космосом, где галактики и звездные скопления разбросаны подобно редким пылинкам, и тесным, исчезающе малым микромиром элементарных частиц. Два полюса мироздания! На одном огромная, расширяющаяся Вселенная, на другом — не видимые ни под каким микроскопом, почти эфемерные «кирпичики» вещества. И вот оказывается, что при определенных условиях Вселенная может обладать свойствами микрочастицы, а некоторые микрообъекты, возможно, содержат внутри себя целые космические миры.

1 ... 31 32 33 34 35 36 37 38 39 ... 83
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности