chitay-knigi.com » Разная литература » Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 46
Перейти на страницу:
может оказаться NP-полной;

• если в задаче встречается некоторая последовательность (например, последовательность городов, как в задаче о коммивояжере) и задача не имеет простого решения, она может оказаться NP-полной;

• если в задаче встречается некоторое множество (например, множество радиостанций) и задача не имеет простого решения, она может оказаться NP-полной;

• можно ли переформулировать задачу в условиях задачи покрытия множества или задачи о коммивояжере? В таком случае ваша задача определенно является NP-полной.

Упражнения

8.6 Почтальон должен доставить письма в 20 домов. Ему нужно найти кратчайший путь, проходящий через все 20 домов. Является ли эта задача NP-полной?

8.7 Имеется задача поиска максимальной клики в множестве людей (кликой называется множество людей, каждый из которых знаком со всеми остальными). Является ли эта задача NP-полной?

8.8 Вы рисуете карту США, на которой два соседних штата не могут быть окрашены в одинаковый цвет. Требуется найти минимальное количество цветов, при котором любые два соседних штата будут окрашены в разные цвета. Является ли эта задача NP-полной?

Шпаргалка

• Жадные алгоритмы стремятся к локальной оптимизации в расчете на то, что в итоге будет достигнут глобальный оптимум.

• У NP-полных задач не существует известных быстрых решений.

• Если у вас имеется NP-полная задача, лучше всего воспользоваться приближенным алгоритмом.

• Жадные алгоритмы легко реализуются и быстро выполняются, поэтому из них получаются хорошие приближенные алгоритмы.

9. Динамическое программирование

В этой главе

• Вы освоите динамическое программирование — метод решения сложных задач, разбиваемых на подзадачи, которые решаются в первую очередь.

• Рассматриваются примеры, которые научат вас искать решения новых задач, основанные на методе динамического программирования.

Задача о рюкзаке

Вернемся к задаче о рюкзаке из главы 8. У вас есть рюкзак, в котором можно унести товары общим весом до 4 фунтов.

Есть три предмета, которые можно уложить в рюкзак.

Какие предметы следует положить в рюкзак, чтобы стоимость добычи была максимальной?

Простое решение

Простой алгоритм выглядит так: вы перебираете все возможные множества товаров и находите множество с максимальной стоимостью.

Такое решение работает, но очень медленно. Для 3 предметов приходится обработать 8 возможных множеств, для 4 — 16 и т.д. С каждым добавляемым предметом количество множеств удваивается! Этот алгоритм выполняется за время O(2^n), что очень, очень медленно.

Для любого сколько-нибудь значительного количества предметов это неприемлемо. В главе 8 вы видели, как вычисляются приближенные решения. Такие решения близки к оптимальным, но могут не совпадать с ними.

Как же вычислить оптимальное решение?

Динамическое программирование

Ответ: с помощью динамического программирования! Давайте посмотрим, как работает этот метод. Процедура начинается с решения подзадач с постепенным переходом к решению полной задачи.

В задаче о рюкзаке начать следует с решения задачи для меньшего рюкзака (или «подрюкзака»), а потом на этой основе попытаться решить исходную задачу.

Динамическое программирование — достаточно сложная концепция; не огорчайтесь, если после первого прочтения что-то останется непонятным. Примеры помогут вам разобраться в теме.

Для начала я покажу вам алгоритм в действии. После этого у вас наверняка появится много вопросов! Я постараюсь ответить на них.

Каждый алгоритм динамического программирования начинается с таблицы. Вот как выглядит таблица для задачи о рюкзаке.

Строки таблицы представляют предметы, а столбцы — емкость рюкзака от 1 до 4 фунтов. Все эти столбцы нужны, потому что они упрощают вычисление стоимостей «подрюкзаков».

В исходном состоянии таблица пуста. Нам предстоит заполнить каждую ячейку таблицы. После того как таблица будет заполнена, вы получите ответ на свою задачу. Пожалуйста, внимательно разберитесь в происходящем. Нарисуйте собственную таблицу, а мы вместе ее заполним.

Строка Гитара

Точная формула для вычисления значений в таблице будет приведена позднее, а пока ограничимся общим описанием. Начнем с первой строки.

Строка снабжена пометкой «гитара»; это означает, что вы пытаетесь уложить гитару в рюкзак. В каждой ячейке принимается простое решение: класть гитару в рюкзак или нет? Помните: мы пытаемся найти множество элементов с максимальной стоимостью.

В первой ячейке емкость рюкзака равна 1 фунту. Гитара также весит 1 фунт — значит, она поместится в рюкзак! Итак, стоимость этой ячейки составляет $1500, а в рюкзаке лежит гитара.

Начнем заполнять ячейку.

По тому же принципу каждая ячейка в таблице содержит список всех элементов, которые помещаются в рюкзаке на данный момент.

Посмотрим на следующую ячейку. На этот раз емкость рюкзака составляет 2 фунта. Понятно, что гитара здесь поместится!

Процедура повторяется для остальных ячеек строки. Вспомните, что текущей является первая строка, поэтому выбирать приходится только из одного предмета — гитары. Считайте, что два других предмета пока недоступны.

Возможно, к этому моменту вы слегка сбиты с толку. Почему все это делается для рюкзаков с емкостью 1, 2 и т.д., если в задаче речь идет о рюкзаке с емкостью 4 фунта? Помните, что я говорил ранее?  Метод динамического программирования начинает с малых задач,

1 ... 28 29 30 31 32 33 34 35 36 ... 46
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности