Шрифт:
Интервал:
Закладка:
1) Отсутствие влияния. Это значит, что взаимодействие данного паралога с третьим белком не зависит от наличия или отсутствия в клетке второго паралога.
2) Компенсация. В этом случае удаление паралога, который в норме взаимодействует с третьим белком, приводит к тому, что сила взаимодействия оставшегося паралога с этим белком возрастает. Иными словами, второй паралог берет на себя функцию взаимодействия с третьим белком, компенсируя утрату первого паралога. Компенсация свидетельствует о том, что генная дупликация повысила устойчивость белок-белкового взаимодействия. Теперь, чтобы его сильно нарушить, потребуется повреждение (например, мутационное) сразу обоих паралогов.
рис. 17.1. Изменение сети белок-белковых взаимодействий при дупликации генов (вверху) и при удалении одного из паралогов (внизу). Темно-серые и светло-серые кружки — паралоги, возникшие в результате дупликации гена, кодирующего исходный белок (темно-серый). Черные кружки — белки, с которыми взаимодействует исходный белок и его потомки, паралоги. Сразу после дупликации функции паралогов идентичны. Затем они начинают накапливать функциональные различия (происходит дивергенция). При этом могут приобретаться новые взаимодействия и утрачиваться старые. В итоге складывается новая сеть белок-белковых взаимодействий, например такая, как слева внизу. Степень устойчивости этой сети может быть оценена в экспериментах по удалению одного из паралогов (здесь светло-серого). В случае «компенсации» сохранившийся паралог берет на себя функции утраченного, что проявляется в усилении белок-белковых взаимодействий. Получается, генная дупликация повысила устойчивость системы. В случае «зависимости» сохранившийся паралог не только не берет на себя чужие функции, но и частично утрачивает собственные. Стало быть, генная дупликация сделала систему более хрупкой (поскольку до дупликации для данного белок-белкового взаимодействия достаточно было двух исправных белков, а теперь требуются три, причем поломка любого из них может нарушить взаимодействие). По рисунку из Diss et al., 2017.
3) Зависимость. Паралог, который в норме взаимодействует с третьим белком, теряет эту способность при удалении другого паралога. Это значит, что генная дупликация сделала белок-белковое взаимодействие более хрупким, поскольку теперь повреждение любого паралога может его нарушить.
В ходе экспериментов выяснилось, что компенсация и зависимость возникают примерно с одинаковой частотой. Компенсация была обнаружена в 22 парах паралогов (из 56) и затрагивала в общей сложности 91 белок-белковую связь (из примерно 2000 рассмотренных). Зависимость оказалась характерна для 19 пар паралогов и затрагивала 137 белок-белковых взаимодействий. При этом компенсация и зависимость редко встречались вместе у одной и той же пары паралогов.
Ученые также заметили, что взаимное влияние паралогов в большинстве случаев асимметрично, то есть только один из двух способен компенсировать утрату другого (19 случаев из 22) или находится в зависимости от другого (14 случаев из 19).
На чем основан механизм компенсации? По идее, то, какой из двух паралогов будет взаимодействовать с третьим белком, может зависеть от количества (концентрации) каждого из паралогов, а также от их аффинности, то есть, грубо говоря, от прочности связывания с этим белком. Дополнительные эксперименты показали, что компенсирующий эффект чаще всего обусловлен различиями в аффинности. В нормальной ситуации с третьим белком связывается тот из паралогов, который лучше умеет это делать. Но если высокоаффинный паралог удалить, то второй, избавившись от конкуренции со стороны более «умелого» партнера, начинает выполнять его работу.
А механизм зависимости, как выяснилось, преимущественно связан с тем, что два паралога объединяются в комплекс — гетеромер, причем один из паралогов стабилизирует другой и помогает ему выполнять его работу. Дополнительные эксперименты на других парах паралогов у дрожжей, а также на культурах человеческих клеток показали, что зависимость одного паралога от другого действительно чаще всего встречается в случае образования гетеромеров.
Анализ данных по белок-белковым взаимодействиям у разных эукариот продемонстрировал, что паралоги, объединяющиеся в гетеромеры, — довольно частое явление. У разных видов эукариот от 6 до 27 % всех пар паралогов образуют гетеромеры. Почему же белки, возникшие из одного предкового белка в результате генной дупликации, объединяются друг с другом, образуя гетеромеры? По-видимому, часто это происходит оттого, что удваивается белок, уже исходно образовывавший комплексы из двух одинаковых белковых молекул — гомомеры. Типичный сценарий развития зависимости может быть следующим.
Предковый белок образует гомомеры — и в таком виде осуществляет взаимодействие с другими белками. После дупликации в одном из паралогов накапливаются мутации, мешающие ему образовывать гомомеры, но не мешающие связываться с другим паралогом. У второго паралога в этом случае могут закрепиться мутации, помогающие связываться с «подпорченным» партнером. Так появляются гетеромеры — комплексы из двух различающихся паралогов, один из которых (а иногда и оба) уже не способен образовывать гомомеры. Гетеромер взаимодействует с другими белками так же, как это делал раньше гомомер исходного, еще не удвоившегося белка. В итоге получается, что после дупликации сложность молекулярной организации возрастает (то, что раньше делали белковые молекулы одного типа, теперь делают совместными усилиями белковые молекулы двух разных типов), хотя очевидной пользы организму это не приносит, а помехоустойчивость межбелковых взаимодействий снижается.
Данный механизм формирования зависимости одного паралога от другого очень похож на «бессмысленное усложнение» (см. Исследование № 18). По-видимому, такое не приносящее пользы усложнение, обусловленное разнонаправленной мутационной деградацией паралогов с последующей компенсаторной «подгонкой» их друг к другу, является важной эволюционной закономерностью, которая, возможно, в какой-то степени объясняет прогрессирующий рост сложности в некоторых эволюционных линиях.
Не исключено, что наличие партнера-помощника, компенсирующего дефекты зависимого паралога, дает последнему дополнительную эволюционную свободу. В принципе, это может способствовать приобретению зависимым паралогом новых функций. Таким образом, в отдаленной перспективе «бессмысленное усложнение» может открывать перед организмами новые эволюционные горизонты. Насколько часто эти возможности реализуются, покажут дальнейшие исследования.
Данное исследование, на наш взгляд, имеет большое мировоззренческое значение. Оно наглядно показывает, как в ходе эволюции сложное может развиться из простого совершенно случайно и без всякой пользы. Организм усложняется, не получая от этого никакой выгоды: эффективность выполнения всех функций остается на прежнем уровне. Этот пример, добавляя конкретики описанным выше оценкам последствий генных дупликаций (см. Исследование № 17), еще раз подчеркивает «недальновидность» естественного отбора, его работу только «здесь и сейчас». С помощью генно-инженерных экспериментов американские биологи расшифровали последовательность событий, в результате которых у предков пекарских дрожжей (Saccharomyces cerevisiae) усложнилась одна из регуляторных систем. Предковый ген удвоился, и в каждой из двух копий стали накапливаться свои мутации. В итоге каждая копия утратила ту или иную часть исходных функций. Функции, утраченные каждой из копий, были разными, благодаря чему копии перестали быть избыточными — теперь оба гена, по-разному подпорченные мутациями, стали жизненно необходимы организму. Дальнейшая специализация двух генов подстегивалась тем, что поначалу они конкурировали, мешая друг другу работать. Минимизация конкуренции потребовала закрепления дополнительных мутаций. В конце концов система усложнилась (два специализированных гена вместо одного многофункционального), хотя сами дрожжи ничего от этого не выиграли. Усложнение стало побочным эффектом цепочки отчасти случайных, отчасти закономерных событий, начало которым положило случайное удвоение гена.