Шрифт:
Интервал:
Закладка:
Хотя конструктивно оно аналогично «трехболтовке», имеет еще и дополнительные элементы, но весит оно уже не 80 кг, а 55. А все дело в том, что шлем теперь не медный, 24-килограммовый, а из легкого и прочного стеклопластика и весит всего 13,5 кг. Перед лицом водолаза находится открывающийся на поверхности передний иллюминатор с улучшенным обзором в стороны. С левой стороны в шлеме есть гнездо, к которому и подсоединяется шланг для подачи воздуха от компрессора, установленного на берегу или судне обеспечения. По мере поступления воздух проходит через регулятор, который автоматически устанавливает норму – от 20 до 120 л в минуту, в зависимости от глубины, на которой находится водолаз. Тут же стоит клапан, не позволяющий воздуху выходить из шлема при внезапном обрыве шланга либо по иной причине.
А на правой стороне шлема смонтирован другой, травящий клапан, выравнивающий внутреннее давление с наружным. По желанию водолаз может воспользоваться и традиционным, головным, клапаном-золотником, нажимая на него затылком.
На шлеме также есть герметичный разъем для подключения телефонного провода, а также соединения для установки небольших цилиндрических светильников, или миниатюрной телекамеры, либо щитка светофильтра, защищающего глаза водолаза от яркого света при электросварке или газовой резке металлических конструкций.
Кольцо шлема герметически соединяется с цилиндрическим фланцем гидрокостюма «сухого» типа. Подобные водонепроницаемые эластичные комбинезоны обычно изготавливают из натуральной резины методом вулканизации, что позволяет обойтись без склейки его частей. Причем под наружный резиновый слой подкладывают полиэстерную ткань, обеспечивающую комфорт, прочность и плотность порядка 1000–1500 г/см2.
Современный водолазный костюм СВВ-9
А фирменные гидрокомбинезоны марки «Нордик ПРО СВВ» производят из высокопрочного триламината – синтетического материала, с обеих сторон продублированного нейлоном. Такой костюм примерно вдвое легче резинового.
Наиболее ответственные части костюма усилены налокотниками, наколенниками и прочими накладками из резины либо кевлара. В нижнюю часть гидрокомбинезона вклеивают резиновые же боты с подошвами толщиной 8 мм, а внутри для термоизоляции ставят прокладку из неопрена.
В отличие от классической «рубахи», влезать в которую приходилось через ворот, который растягивали два помощника водолаза, в нынешнем комбинезоне имеются водонепроницаемые застежки-молнии, облегчающие и ускоряющие его надевание.
Перчатки могут быть «мокрыми», водонепроницаемыми, из неопрена либо «сухими», изготовленными из латекса или резины.
Особо отметим, что все материалы водолазного костюма стойки к воздействию не только воды, но и нефти, бензина и технических масел.
При обрыве или зажиме воздухопроводного шланга водолаз может отсоединить его и всплывать, пользуясь запасом воздуха, заключенным в двух баллонах, объемом по 2 л. Они наполнены воздухом под давлением 200 кг/см2, который при необходимости начинает поступать в шлем через поршневой редуктор ВР-15. Воздуха вполне достаточно, чтобы можно было подняться на поверхность с глубины в 60 м, делая остановки, чтобы избежать кессонной болезни.
На практике приходится вести работы и на больших глубинах. Тут уж сжатый воздух для дыхания и резиновый костюм не годятся.
Глубоководные скафандры делают из прочной стали, позволяющей выдерживать давление и на глубине порядка 300 м, а дышат водолазы уже особыми смесями на основе не азота, а гелия.
Наши специалисты В. Иванов, И. Выскребенцев, С. Кийко еще в 1946 году смогли погрузиться в пучину на 200 м, а затем водолазы Д. Лимбес, В. Шалаев, А. Ковалевский и другие побывали на 300-метровой глубине за десять лет до швейцарца Г. Келлера.
Цель, которую преследовали отважные первопроходцы, – добиться длительного пребывания на глубине и быстрого возвращения на поверхность. Однако еще в XVIII веке французский ученый П. Бэр отметил, что «давление воды действует на живой организм… как химический агент». В чем тут дело?
В обычных условиях все мы дышим воздухом, в котором парциальное давление кислорода составляет 0,21 атм. Если же оно будет ниже 0,16 атм, возникает кислородное голодание, сопровождающееся внезапной потерей сознания, а в том случае, когда оно превышает 0,6 атм, наступают кислородное отравление, а за ним и летальный исход.
Отсюда нетрудно прийти к выводу – чем глубже опускается подводник, тем меньше ему нужно кислорода, место которого в дыхательной смеси должны занять другие газы – разбавители. В атмосферном воздухе им служит азот. Однако при повышенном давлении и с ним происходят неприятные метаморфозы и у ныряльщика или водолаза возникает так называемый азотный наркоз. Дурманящее действие азота проявляется на глубине уже 40 м, а на 80–90 м оно становится опасным – у водолаза возникает ненормальное возбуждение, начинаются галлюцинации.
Поэтому на глубине азот заменяют гелием. Еще в 1937 году американский инженер М. Нол успешно погрузился, дыша гелиевой смесью, на глубину порядка 100 м. Позднее выяснилось, что употребление гелия не вызывает глубинного опьянения и на 300 м. А дальше появляется новый враг. Это НСВД – нервный синдром высоких давлений. Тут именно гелий и показывает себя «во всей красе». Сначала у подводного пловца начинаются нарушения моторики (дрожь), затем он теряет ясность мышления, приходит в возбуждение, заканчивающееся припадками эпилептического характера.
Поэтому в некоторых странах попробовали заменить и гелий. В 1968 году несколько обезьян опустили на глубину 600 м, подавая им гелиево-водородно-кислородную смесь, и животные перенесли этот эксперимент довольно сносно. Однако и по сей день водолазы работают на глубинах 600–700 м лишь в случаях крайней необходимости.
Для исследования больших глубин исследователи стали использовать батисферы – прочные оболочки сферической формы с герметично закрывающимся люком и прочным иллюминатором для наблюдения. Такую сферу подвешивают на тросе и спускают в воду с судна обеспечения.
Проект такого аппарата американцы К. Ричардсон и Дж. Уолкотт представили еще в 1848 году. Но осуществить свой проект они не смогли. И их опередил У. Базен, который в 1865 году сумел опуститься в сфере собственной конструкции на глубину 75 м.
В начале ХХ века исследованиями глубин весьма заинтересовался биолог У. Биб. Он ознакомился с проектом батисферы капитана Дж. Батлера и сумел добиться, чтобы она была построена. Сфера диаметром около 1,5 м была целиком отлита из стали и весила 2,5 т. Толщина стенок составляла чуть больше 3 см. Аппарат имел узкий, 35-сантиметровый люк, небольшие иллюминаторы из кварцевого стекла диаметром 152 мм и рули для поворота вокруг оси.
Атмосфера внутри батисферы очищалась при помощи вентилятора, который прогонял воздух через кассеты с порошком хлорида кальция для удаления углекислого газа. А дозированные порции кислорода поступали из двух баллонов, емкостью по 600 л.