Шрифт:
Интервал:
Закладка:
Производство биогаза путем метанового «брожения» отходов — одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран. И хотя при использовании коровьего навоза только четверть органического материала превращается в биогаз, последний выделяет тепла на 20 % больше, чем его можно получить при полном сгорании навоза.
Производство биогаза имеет следующие достоинства: это источник энергии, доступный на семейном и общинном уровне; отходы процесса служат высококачественными удобрениями и в довершение сам процесс способствует поддержанию чистоты окружающей среды. Чтобы обеспечить крупномасштабное развитие и экономическую выгоду предприятий по производству биогаза, необходимо решить целый ряд биохимических, микробиологических и социальных проблем. Усовершенствования касаются следующих областей: сокращения числа стальных элементов в используемом оборудовании; создания оборудования с оптимальной конструкцией; разработки эффективных нагревателей; нагрева дайджестеров за счет солнечной энергии; объединения систем производства биогаза с другими нетрадиционными источниками энергии; конструирования крупномасштабных производственных единиц для сельских или городских общин; оптимального использования переработанных отходов и, наконец, усовершенствования процессов брожения и начальной деградации отходов.
Биотехнология в состоянии внести крупный вклад в решение проблем энергетики посредством производства достаточно дешевого биосинтетического этанола, который кроме того является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов.
Источником углеводородов также могут служить водоросли. У широко распространенной зеленой водоросли Botryococcus braunii (обитающей в пресной и солоноватой воде умеренных и тропических зон) углеводороды в зависимости от условий роста и разновидностей могут составлять до 75 % сухой массы. Они накапливаются внутри клеток, и водоросли, в которых их много, плавают на поверхности. После сбора водорослей эти углеводороды легко отделить экстракцией каким-нибудь растворителем или методом деструктивной отгонки. Таким путем может быть получено вещество, аналогичное дизельному топливу и керосину.
Встречается несколько разновидностей В. braunii, отличающихся пигментацией и структурой синтезируемых углеводородов. Зеленая разновидность содержит линейные углеводороды с нечетным (25–31) числом атомов углерода, бедных двойными связями. Красная водоросль содержит углеводороды с 34–38 атомами углерода и несколькими двойными связями; это так называемые "ботриококкцены". Смысл существования двух разновидностей в настоящее время изучается. Углеводороды накапливаются в клеточной стенке, их синтез связан с метаболической активностью водоросли в фазе роста. Выход углеводородов при создании оптимальных условий культивирования может достигать 60 т/га*год для культуры водорослей, выращиваемой в толще воды в природных или искусственных условиях. Для определения перспективности использования В. braunii необходимо провести следующие исследования:
— определить условия, обеспечивающие максимальную скорость роста и образования углеводов в лабораторных и полевых условиях;
— выяснить, можно ли добиться скорости роста В. braunii, сопоставимой с известной для других водорослей;
— разработать соответствующие методы выращивания, сбора и переработки;
— оценить применимость получаемого продукта как альтернативного источника топлива и смазочных веществ. Исследования, связанные с выделением и возможностью утилизации углеводородов В. braunii, могут также способствовать лучшему пониманию вопроса о происхождении нефти.
Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами
Развитие промышленности ведет к образованию большого количества отходов, в том числе отходов, содержащих новые антропогенные компоненты. Методами биотехнологии эти отходы могут быть переработаны в полезные или безвредные продукты.
Бытовые отходы делятся на 2 группы: твердые отходы и сточные воды.
Твердые бытовые отходы состоят из целлюлозосодержащих материалов (до 40 % бумаги, 2.5 % дерева, 8 % текстиля) и пищевых отходов (40 %). Наиболее экономична и радикальна переработка их метановым брожением, в результате образуется легко транспортируемое топливо — метан.
Сточные воды обычно содержат сложную смесь нерастворимых и растворимых компонентов различной природы и концентрации. Бытовые отходы, как правило, содержат почвенную и кишечную микрофлору, включая патогенные микроорганизмы.
Сточные воды сахарных, крахмальных, пивных и дрожжевых заводов, мясокомбинатов содержат в больших количествах углеводы, белки и жиры, являющиеся источниками питательных веществ и энергии.
Стоки химических и металлургических производств могут содержать значительное количество токсических и даже взрывчатых веществ. Серьезное загрязнение возникает при попадании в окружающую среду соединений тяжелых металлов, таких как железо, медь, олово и др.
Цель очистки сточных вод — удаление растворимых и нерастворимых компонентов, элиминирование патогенных микроорганизмов и проведение детоксикации таким образом, чтобы компоненты стоков не вредили человеку, не загрязняли водоемы. Бактерии рода Pseudomonas практически всеядны. Например, P. putida могут утилизировать нафталин, толуол, алканы, камфару и др. соединения. Выделены чистые культуры микроорганизмов, способные разлагать специфические фенольные соединения, компоненты нефти в загрязненных водах и т. д. Микроорганизмы рода Pseudomonas могут утилизировать и необычные химические соединения — инсектициды, гербициды и другие ксенобиотики. Генетически сконструированные штаммы микроорганизмов в будущем смогут решить проблему очистки сточных вод и почв, загрязненных пестицидами и другими антропогенными веществами.
Азотсодержащие соединения (белки, аминокислоты, мочевина) могут быть удалены в биологическом процессе денитрификации-нитрификации. Биологическое удаление азота и фосфора, являющихся причинами эвтрофикации (зарастания озер микроводорослями, которые бурно размножаются, затем отмирают, давая пищу аэробным бактериям, потребляющими кислород, что приводит к замору рыбы) озер и каналов, находится в стадии экспериментов.
Тяжелые металлы затрудняют биологические процессы очистки стоков и отрицательно влияют на флору и фауну. Природные штаммы микроорганизмов не могут быть использованы для накопления этих металлов в силу их высоко токсичности. Однако, есть белок высших организмов — металлотионеин, который активно связывает различные тяжелые металлы. Ген, кодирующий синтез мышиного металлотионеина, клонирован в бактериях. Это открывает возможность получения белка в больших количествах с использование иммобилизованных бактерий и его использования для связывания и экстракции тяжелых металлов.
Сельскохозяйственная биотехнология
Биологическая азотфиксация — процесс фиксации атмосферного азота бактериями, живущими в симбиозе с представителями семейства бобовых. Для ускорения заселения ризосферы обычно используют бактериальные удобрения, содержащие культуры азотфиксирующих микроорганизмов, например, клубеньковых бактерий. Методами генной инженерии выведены мутанты клубеньковых бактерий с повышенной способностью к азотфиксации. Ведутся работы по созданию азотфиксирующих растений, способных к симбиозу со злаковыми.
Микробные инсектициды. В последнее время все чаще появляются данные о мутагенном и канцерогенном действии химических пестицидов, которые плохо разрушаются и накапливаются в окружающей среде.
Для получения микробных инсектицидов используются вирусы, грибы, простейшие, наиболее удобны — спорообразующие бактерии. Микробные инсектициды высоко специфичны и действуют только на определенные вредные насекомые, оставляя невредимыми полезные. Патогенность микроорганизмов вызвана действием определенных