Шрифт:
Интервал:
Закладка:
Призрачные свойства нейтрино впервые заметил физик Вольфганг Паули. При изучении бета-распада Паули понял, что без новой частицы не получится логически связать описание процесса.
Поэтому в 1930 году он постулировал новую частицу — нейтрино. Чтобы просто взять и придумать для решения проблемы новую частицу, нужна, наверное, неплохая интуиция. Поговаривают, что он даже заявил следующее: «Я сделал сегодня что-то ужасное. Я предположил нечто, чего никогда нельзя будет проверить экспериментально, потому что эта частица взаимодействует настолько слабо, что ее никогда не удастся увидеть».
Но тут Паули ошибся. В 1956 году физикам Клайду Коуэну и Фредерику Райнесу удалось впервые обнаружить нейтрино экспериментальным путем. Они устроили хитроумный эксперимент с ядерным реактором. В ядерных реакторах образуется очень много нейтрино высокой энергии, поэтому их детектор просто бомбардировало невероятное количество яростных нейтрино. Подавляющее большинство нейтрино, естественно, прошло через эксперимент незамеченными. Тем не менее оказалось, что в среднем три нейтрино в час сталкиваются с материалом внутри детектора. Такие столкновения привели к небольшой серии реакций, которые в конечном счете привели к гамма-излучению — его и заметили Коуэн и Райнес. С тех пор нейтрино наблюдали в бесчисленных экспериментах.
На сегодняшний день в мире существует не один нейтринный детектор. Из-за такой неуловимости частицы-призрака детекторы часто делают ну очень большими, чтобы не упустить шанс разглядеть столкновение. Именно поэтому многие эксперименты выглядят так оригинально и зрелищно. Один из крутейших проектов, связанных с нейтрино, — это обсерватория АйсКьюб (Ледяной куб, IceCube) на Южном полюсе: ученые пробурили толщу льда и погрузили туда «нити» длиной практически в три километра. Каждая нить к тому же снабжена светочувствительными детекторами. В совокупности этими детекторами напичкан целый кубический километр льда. При правильной скорости столкновение нейтрино со льдом может привести к едва заметной вспышке света. Детекторы в длинных «нитях» улавливают эти вспышки для последующих исследований АйсКьюб. Цель всего вышеописанного — узнать больше о нейтрино и в особенности о различных порождающих их процессах.
А где могут рождаться нейтрино? Мы уже поговорили о Солнце, Большом взрыве и атомных электростанциях. А еще о темной материи — если она, конечно, тоже на это способна. Таким образом, возможно, эксперимент АйсКьюб, в ходе которого в глубинах антарктического льда отслеживаются вспышки света, обнаружит и следы темной материи. И скоро мы поймем, как именно.
Почему сами нейтрино не могут быть темной материей? Тут все просто: их масса слишком мала. По правде говоря, пару десятилетий назад многие думали, что у нейтрино и вовсе нет массы. С того времени в ходе ряда экспериментов было доказано, что сколько-то они все же весят. Конкретные числа нам неизвестны, но точно меньше одной миллионной массы электрона. А это безумно мало, особенно если вспомнить, что электрон — легчайшая частица вещества в Стандартной модели.
А почему маленькая масса — это проблема? Потому что обычно во Вселенной все происходит так: чем быстрее частица, тем она легче. Получается, нейтрино должны быть сверхбыстрыми. Мы помним, что темная материя есть еще и в скоплениях галактик, и в галактиках. Эти скопления и галактики возникли из-за того, что в молодой Вселенной образовались небольшие уплотнения, которые впоследствии разбухли из-за гравитации. Давайте теперь представим, что нейтрино приближается к нашей Галактике со своей суперскоростью. Если бы частица обладала сознанием, то подумала бы что-нибудь вроде: «О, галактика! И какая красивая! Да еще и с такой притягательной гравитацией. Может, мне присоединиться к ней? Но… упс! Похоже, я ее уже пролетела.
Ну что ж, приятно было познакомиться, галактика!» И она просто помчится дальше, как участник марафона мимо промоутера. Ну конечно, в нашей Галактике тоже есть нейтрино, но те невообразимые количества нейтрино, оставшиеся от Большого взрыва, слишком быстры, чтобы прилипать к галактикам.
Да и к тому же мы многое знаем о взаимодействии нейтрино с другими материями и примерно представляем, сколько таких призраков летает по Вселенной. Если суммировать вес всех нейтрино, окажется, что их общая масса в лучшем случае составляет десятую часть всей видимой материи. А наблюдения за Вселенной говорят о гораздо больших количествах темной материи. В целом, кажется, что темная материя должна весить примерно в пять раз больше, чем видимая. Так что нейтрино весят слишком мало, чтобы быть той самой темной материей, которую мы ищем.
А что, если нейтрино были бы, скажем, в десять миллиардов раз массивнее? Тогда бы они были гораздо более медлительными. И такие тяжелые чудовища уж точно нашли бы время заглянуть в галактику. А оказавшись в галактике, они могут кататься туда-сюда, как боулинговые шары на рампе для скейтборда. Да, они не сталкиваются, но и покинуть галактику скорость не позволяет.
Так что во время охоты на частицу темной материи нужно искать что-то похожее на нейтрино, но гораздо, гораздо тяжелее. У таких частиц есть название. Считается, что мы ищем холодную темную материю. И говоря «холодная», мы имеем в виду частицы, которые передвигаются не слишком быстро. В Стандартной модели нет места новым частицам, так что искать нам придется за ее пределами.
И хоть нейтрино и не стали той самой частицей темной материи, из всей ситуации можно извлечь парочку уроков. Во-первых, теперь нет сомнений в существовании невидимых частиц-призраков. Во-вторых, их пример демонстрирует, что этих призраков реально обнаружить. Теперь осталось только придумать изощренные эксперименты, которые будут искать именно частицу темной материи. Все это должно вселить в нас надежду на то, что темную материю реально обнаружить, ведь еще шестьдесят лет назад Коуэну и Райнесу удалось обнаружить невидимые нейтрино.
В настоящее время эксперименты проводятся на Международной космической станции, спутниках на орбите Земли, наземных телескопах и сверхчувствительных детекторах глубоко под землей. Все эти технологии задействованы в поиске темной материи. Какой же из способов наиболее эффективен? Зависит оттого, какая частица или частицы образуют темную материю.
Так чем может быть темная материя?
Вимпы: темные массивные слабаки
Во всех этих названиях частиц легко запутаться. А когда разговор заходит о предполагаемых кандидатах на частицу темной материи, то названий становится еще больше. За утешением можно обратиться к мудрой фразе, которую известный физик Энрико Ферми как-то сказал студенту примерно в середине XX века: «Молодой человек, если бы у меня хватало памяти запомнить названия всех этих частиц, то я стал бы ботаником».
Хоть Ферми и не имел в виду частицы темной материи, но и в нашей ситуации цитата актуальна. Ведь дефицита в гипотетических частицах темной материи не наблюдается: вимпы, SIMPbi (сильно взаимодействующие массивные частицы), аксионы, стерильные нейтрино, нейтралино, гравитино, фотино, криптон, зеркальное вещество, Q-ball, Вимпзилла (WIMPZilla) и так далее4*5. Но разобраться с особенностями частицы темной материи можно и не изучая в подробностях всех этих диковинных зверей — как ни крути, а Энрико Ферми ведь стал выдающимся физиком, не зная наизусть все типы частиц.